

Optimising Land Allocation for Paddy Varieties Using Linear Programming: A Case Study of Pawaga, Tanzania

¹Mustapha Kiswanya*, ²Seleman Ismail and ³Saul Mpeshe

¹The Open University of Tanzania, P.O Box 1458, Iringa, Tanzania

²The Open University of Tanzania, P.O Box 23409, Dar-es-salaam, Tanzania

³University of Iringa, P.O Box 200, Iringa, Tanzania

DOI: <https://doi.org/10.62277/mjrd2025v6i40009>

ARTICLE INFORMATION

Article History

Received: 10th August 2025

Revised: 11th November 2025

Accepted: 12th December 2025

Published: 31st December 2025

Keywords

Paddy varieties

Maximum profit

Linear programming

Resource allocation

Decision-making

ABSTRACT

Farmers often operate with limited resources, making strategic and scientifically informed decision-making essential. Linear programming is one such analytical tool that can support optimal resource allocation. A case study was conducted in Pawaga, Iringa District, Tanzania, with the aim of evaluating the gross profit of growing four paddy varieties, namely Shingo yamwali, Faya, Saro 5 and Zambia, using linear programming. Farmers in the area typically select crop varieties based on intuition or peer influence, which can lead to suboptimal profitability. A study was conducted to determine the gross revenue per acre for different paddy varieties, assess their variable production costs, and compute their gross profits. Linear programming was then applied using Microsoft Excel Solver to identify the best land allocation that would maximise overall farm profit. A farmer should allocate the 4 acres of land by growing 2.7 acres of paddy Shingo yamwali and 1.3 acres of paddy Saro 5 so as to generate a gross profit of 7,680,400 shillings under the operating cost of 4,167,000 shillings. The results show that the gross profit obtained through the LP model is superior to that obtained through the traditional method by 6%. This suggests that, by reallocating the same land and operating under the same budget constraints, farmers could increase their gross profit compared to their current practices. The study concludes that scientific tools such as linear programming can significantly improve crop planning and encourages farmers to transition from experience-based decision-making to data-driven strategies for enhanced profitability.

*Corresponding author's e-mail address: mustapha.kiswanya@gmail.com (Kiswanya, M.)

1.0 Introduction

Paddy is a staple food for the majority of people around the world, and many different paddy varieties are cultivated globally (Handayani, 2022). In Pawaga, Iringa District, Tanzania, four varieties – Shingo ya Mwali, Faya, Saro 5, and Zambia – are predominantly grown. These varieties differ in their production requirements, associated costs, taste, flavour, and aroma, which can influence farmers' choices and profitability. This study analysed the gross profit of cultivating four paddy varieties using a Linear Programming (LP) approach. Data were collected on total revenue per acre, variable production costs, and the resulting gross profit for each variety. The objective was to use this information within the LP model to determine the land allocation that would maximise total farm profit.

Farmers customarily rely on intuition, experience and comparisons with their neighbours to make decisions concerning land allocation to different crops, which in many cases do not guarantee the optimal profit (Jawla *et al.*, 2018).

Linear programming is a useful tool for addressing such resource allocation problems, as it enables the identification of the most efficient combination of decisions under given constraints (Ganesh Nayak & Ananthi, 2024). In this research, a linear programming model is formulated to guide farmers in selecting an optimal mix of paddy varieties that maximises profitability while efficiently utilising available land.

2.0 Materials and Methods

2.1 Study Area

This study was conducted at the Pawaga irrigation scheme in the Iringa district, Tanzania, about 80 km from Iringa town, famous for paddy production. The scheme is on the west bank of the Little Ruaha River. The average annual rainfall in the area is 375 mm; consequently, agriculture mainly depends on irrigation in this area (TEEB, 2020). Soils in the region are generally fertile, and local farmers cultivate multiple paddy varieties, including Shingo ya Mwali, Faya, Saro 5, and Zambia, based on field observations and information provided by participants.

2.2 Sampling Design and Procedures

The participants of this study were all extension officers from six villages, namely Itunundu, Magombwe-Kisoloka, Kisanga, Isele, Kimande and Mbwayuni-Ndolela, together with two ward extension officers (WEO) (Itunundu and Mlenge) and scheme leaders. The extension officer was selected because they are the ones with agronomy science, which is the science and technology of producing plants. They are knowledgeable about plant genetics, physiology, meteorology, and soil science. The relevant information concerning crop production activities in the study area was obtained from them. The scheme leaders were involved primarily in administrative matters and provided support during the field observations.

2.3 Methods of Data Collection

Primary data and secondary data were all used in this study. Primary data was collected from the study area by onsite observation and pre-tested semi-structured questionnaires to extension officers using the Delphi technique. The primary data gathered is based on the existing farm plan, including the number of acres cultivated, which is a unit they prefer more than hectares; the types of crops grown; the amount and price of resources used (fertiliser, seeds, labour, and capital); the yield of each crop per acre; and the average price of each crop in the market in Tanzanian shillings per kilogram.

The primary data for this study was collected from extension officers rather than farmers because many farmers are not consistently implementing scientifically recommended practices, which could affect the accuracy of the results. Farmers also do not have a habit of record keeping (Biswas *et al.*, 2023). The data collected is from field classes or other farms that are under the supervision of extension officers. Secondary data was gathered from different literature reviews, both published and unpublished. Sources for secondary data include books, journals, articles, and annual reports from various sources, such as regional libraries. Data analysis was conducted using Microsoft Excel.

2.4 Case Study Design

This research adopts a case study approach, focusing on a single 4-acre paddy farm managed by an extension officer. The farm was selected to allow a detailed analysis of land allocation and profitability across the four dominant paddy varieties. Supporting information was collected from multiple extension officers to contextualise local production practices, input costs, and market prices.

2.5 Gross Profit Calculation

Profitability is the ability of the business, in this case, the farm, to earn a profit (Rahaman *et al.*, 2022). Farm profit is calculated as the difference between the total revenue earned by the farm and the cost incurred (Basnet *et al.*, 2022). Various profitability ratios are commonly used to assess firms' performance and efficiency, including gross profit margin, net profit margin, return on equity (ROE), and return on assets (ROA) (Kryszak *et al.*, 2021).

Among these, the gross margin analysis is particularly useful for cash flow planning and evaluating the relative profitability of different farm enterprises (Kuznietsova *et al.*, 2024). Gross margin estimates can help to determine which crops are more profitable than others. This profitability ratio is different from other ratios since it includes variable costs such as seeds, fertilisers, pesticides, material cost and labour cost and excludes fixed costs (Castillo *et al.*, 2021). Gross margin analysis uses basic mathematical techniques to estimate yields and calculate profit or loss, helping farmers achieve economic stability (Mukherjee, 2005). The higher the gross profit, the more profitable the crop (Popescu, 2012).

Let i denote the paddy variety, where $i = 1, 2, 3, 4$ corresponds to Shingo ya Mwali, Faya, Saro 5, and Zambia, respectively.

The gross profit for crop i is defined as:

$$\text{Gross profit}(GP_i) = \text{Revenue} - \text{cost of good sold}(cogs) \quad (1)$$

Equivalently

$$\text{Gross profit}(GP_i) = \text{Revenue} - \text{Variable cost} \quad (2)$$

$$\text{Thus } GP_i = (TR_i - VC_i) \quad (3)$$

Where total revenue is given by price times yield:

$$GP_i = (P_i Y_i - VC_i) \quad (4)$$

Where i =Index representing the paddy variety

$$GP_i = \text{Gross Profit of crop } i$$

$$TR_i = \text{Total Revenue of crop } i$$

$$VC_i = \text{Variable Cost per acre of crop } i$$

$$P_i = \text{Price per unit Kg of crop } i$$

$$Y_i = \text{Yield per acre of crop } i$$

2.6 Linear Programming Model

A linear programming model is a mathematical representation of a real-world problem using linear equations and inequalities to be solved by the linear programming technique. A problem is said to be a linear programming problem (LPP) when it possesses the four essential characteristics, which are linearity (proportionality), additivity, divisibility (continuity) and certainty (Chatare, 2023).

In crop production, the LP models aim to optimise gross profit (which is the focus of this research) or sometimes cost minimisation and are obtained by following the optimal plan generated from the solution of the LP.

In model formulation, our base is a farmer who owns 4 acres of land and uses his land to grow paddy. Each paddy variety produces different amounts of yield using different amounts of resources and variable costs and sells for different prices. Therefore, a farmer must decide which paddy variety to choose and how much of each variety to produce to maximise profits. The general structure of a linear programming model typically comprises the following key elements:

- i. Decision variables/control variables
- ii. Objective function
- iii. Constraints

In this study, our concern is in maximising the profit for farmers, so the general maximising formulation as by Sofi *et al.* (2015) will be of the form:

$$\max Z = c_1 x_1 + c_2 x_2 + c_3 x_3 + \dots + c_n x_n \quad (5)$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \leq b_1 \quad (6)$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \leq b_2 \quad (7)$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \leq b_m \quad (8)$$

$$x_1 \geq 0, x_2 \geq 0, \dots, x_n \geq 0$$

Where $x_1, x_2, x_3 \dots x_n$ are decisions variables, they represent the quantity of each paddy variety to plant per acre.

$c_1 \dots c_n$ are coefficients in the objective function, they represents the gross profit per acre for each paddy variety.

b_1, b_2, \dots, b_m are right hand side values, they represent the amount of available resources. a_{ij} , these indicate how much of each resource is used per unit of decision variable.

The usual approach for solving this kind of problem is to use the Simplex method (Patel *et al.*, 2017). This study will use the simplex method, which is a mathematical technique for solving linear programming problems by first locating a feasible solution and then working iteratively until the optimal solution is obtained.

There are several software which can be used in solving LP models, including EXCEL SOLVER, MATLAB, LINDO, LINGO, TORA, AMPL, PYTHON, etc. (Alotaibi & Nadeem, 2021). The

modelled problem was solved using the Microsoft Excel Solver (2010). This software is a very popular and easily accessible tool, which can enable even small farmers to obtain quantitative solutions in their daily lives.

The 4-acre farm from Pawaga, Iringa, was selected as a case study in this paper. The data was collected from an extension officer in Pawaga, Iringa, Tanzania. The total revenue and production variable costs of four paddy varieties in the area were surveyed, which is owned by the extension officer, who provided the data through documents and unstructured interviews. Based on this data, the gross profit of each paddy variety was calculated using Equation (2), and the linear programming model was formulated.

Table 1

Farming Plan before Optimization per Acre

	SHINGO YA MWALI	FAYA	SARO 5	ZAMBIA	TOTAL
PROFIT	1,794,000	1,608,600	2,182,000	1,666,000	7,250,600
TOTAL COST	1,022,000	1,041,000	1,082,000	1,022,000	4,167,000
REVENUE	2,816,000	2,649,600	3,264,000	2,688,000	11,417,600

Table 1 presents the data based on experience and intuition that were used to allocate the 4 acres of available land by allocating 1 acre to each paddy variety. The farm generates total

revenue of 11,417,600 shillings under the operating cost of 4,167,000 shillings, hence the gross profit of 7,250,600 shillings.

Table 2

LP Formulation

	SHINGO YA MWALI	FAYA	SARO 5	ZAMBIA	Resource Available
GROSS PROFIT	1794000	1608600	2182000	1666000	
LAND	1	1	1	1	4
LAND PREPARATION	100000	100000	100000	100000	400000
SEEDS	15000	15000	15000	15000	60000
PLANTING	120000	120000	120000	120000	480000
WEEDING	60000	60000	60000	60000	240000
FERTILIZER	142000	142000	142000	142000	568000
FERTILIZER APPLICATION	20000	20000	20000	20000	80000
CHEMICALS	15000	15000	15000	15000	60000
CHEM APPLICATION	10000	10000	10000	10000	40000
CROP PROTECTION	150000	150000	150000	150000	600000
HARVESTING	160000	160000	160000	160000	640000
TRANSPORT	70000	80000	100000	70000	320000
STORAGE	60000	69000	90000	60000	279000
OTHER	100000	100000	100000	100000	400000
OPERATING COST	1022000	1041000	1082000	1022000	4167000

In formulating the linear programming model, the decision variables are defined as follows:

X_1 = Acres for Shingo ya mwali

X_2 = Acres for Faya

X_3 = Acres for Saro5

X_4 = Acres for Zambia

The present study measured farm profitability in terms of farm gross margin; hence, the objective function of the LP model was used to maximise overall farm gross profit by selecting the optimal crop combination. The data from Table 2 is used

to generate the following system of equations (LP model):

Objective function

$$\begin{aligned} \max Z = & 1,794,000X_1 + 1,608,600X_2 \\ & + 2,182,000X_3 + 1,666,000X_4 \end{aligned}$$

Constraint 1 land constraints

$$X_1 + X_2 + X_3 + X_4 \leq 9$$

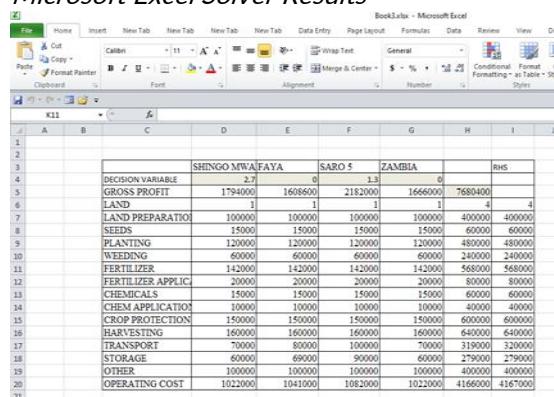
Constraint 2 land preparation budget

$$\begin{aligned} 100,000X_1 + 100,000X_2 + 100,000X_3 \\ + 100,000X_4 \leq 400,000 \end{aligned}$$

Constraint 3 seeds cost

$15,000X_1 + 15,000X_2 + 15,000X_3 + 15,000X_4 \leq 60,000$	Constraint 11 harvesting cost $160,000X_1 + 160,000X_2 + 160,000X_3 + 160,000X_4 \leq 640,000$
Constraint 4 planting cost $120,000X_1 + 120,000X_2 + 120,000X_3 + 120,000X_4 \leq 480,000$	Constraint 12 transportation cost $70,000X_1 + 80,000X_2 + 100,000X_3 + 70,000X_4 \leq 320,000$
Constraint 5 weeding cost $60,000X_1 + 60,000X_2 + 60,000X_3 + 60,000X_4 \leq 240,000$	Constraint 13 storage cost $60,000X_1 + 69,000X_2 + 90,000X_3 + 60,000X_4 \leq 279,000$
Constraint 6 fertilizer budget $142,000X_1 + 142,000X_2 + 142,000X_3 + 142,000X_4 \leq 568,000$	Constraint 14 miscellaneous cost $100,000X_1 + 100,000X_2 + 100,000X_3 + 100,000X_4 \leq 400,000$
Constraint 7 fertilizer application labour cost $20,000X_1 + 20,000X_2 + 20,000X_3 + 20,000X_4 \leq 80,000$	Constraint 14 total variable cost $1,022,000X_1 + 1,041,000X_2 + 1,082,000X_3 + 1,022,000X_4 \leq 4,167,000$
Constraint 8 insecticide cost $15,000X_1 + 15,000X_2 + 15,000X_3 + 15,000X_4 \leq 60,000$	Non negativity constraints $X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9 \geq 0$
Constraint 9 insecticide application labour cost $10,000X_1 + 10,000X_2 + 10,000X_3 + 10,000X_4 \leq 40,000$	
Constraint 10 crop protection cost $150,000X_1 + 150,000X_2 + 150,000X_3 + 150,000X_4 \leq 600,000$	

Table 3


Operating Cost and Gross Profit Per Acre

	SHINGO YA MWALI	FAYA	SARO 5	ZAMBIA
GROSS PROFIT	1794000	1608600	2182000	1666000
LAND PREPARATION	100000	100000	100000	100000
SEEDS	15000	15000	15000	15000
PLANTING	120000	120000	120000	120000
WEEDING	60000	60000	60000	60000
FERTILIZER	142000	142000	142000	142000
FERTILIZER APPLICATION	20000	20000	20000	20000
CHEMICALS	15000	15000	15000	15000
CHEM APPLICATION	10000	10000	10000	10000
CROP PROTECTION	150000	150000	150000	150000
HARVESTING	160000	160000	160000	160000
TRANSPORT	70000	80000	100000	70000
STORAGE	60000	69000	90000	60000
OTHER	100000	100000	100000	100000
OPERATING COST	1022000	1041000	1082000	1022000

From the Table (3) the costs of many items are similar for all paddy varieties except for transport cost and storage which depend on the yield.

Figure 1

Microsoft Excel Solver Results

The results from the linear programming solution obtained by the simplex method as presented in Figure (1) from Microsoft Excel Solver show that the farmer should allocate the 4 acres of land by

growing 2.7 acres of paddy Shingo yamwali and 1.3 acres of paddy Saro 5. The farm can generate a gross profit of 7,680,400 shillings under the operating cost of 4,167,000 shillings.

Table 4
Comparison of Traditional vs LP model

Method	Operating Cost (Tanzania shillings)	Gross Profit (Tanzania shillings)
Traditional	4,167,000	7,250,600
Linear Programming	4,167,000	7,680,400

Table 4 presents a comparison of the operating cost and gross profit of the two approaches, LP and the traditional allocation. Using traditional methods based on experience and intuition, a farmer generates a profit of 7,250,600 shillings from the four acres of land by incurring an operating cost of 4,167,000 shillings. On the other hand, using an LP technique, from the same farm (4 acres) and the same operating cost of 4,167,000 shillings, the farm generates a profit of 7,680,400 shillings.

The gross profit obtained from the linear programming (LP) allocation was 7,680,400 shillings, while the gross profit from the traditional allocation was 7,250,600 shillings. The increase in profit was calculated as follows:

$$\text{increase in profit} = \frac{7,680,400 - 7,250,600}{7,250,600} \times 100 = 6\% \quad (9)$$

4.0 Discussion

The results show that the gross profit obtained through the LP model is superior to that obtained through the traditional method by 6%. While this increase may appear modest, it is due to the fact that these paddy varieties have similar variable cost and profit contributions, that is why optimizing mix yields only small shifts—and thus modest gains.

However, the LP model still identifies a more economically efficient combination — favoring Shingo ya Mwali and Saro 5, which provide relatively higher returns when compared to Faya and Zambia. This suggests that farmers can maximize income by adopting an optimization approach rather than relying solely on intuition and experience.

These findings support the use of mathematical decision tools in agricultural planning, especially when working with limited resources.

5.0 Conclusion

In this study, the focus was on solving the problem of deciding how to select and allocate four paddy varieties in a farm of 4 acres so as to obtain the maximum profit faced by farmers in Pawaga, Iringa, Tanzania. An applied mathematical technique, belonging to a class of operational research called linear programming, was used and implemented in Microsoft Excel Solver. The results obtained from the formulated LP model were compared with those from the existing farming plan, which uses experience. It shows that using previous experience and intuition does not provide an optimal result. LP model results are always superior, as it can be seen that there is an increased gross profit of 6%.

6.0 Recommendations

Based on the results obtained from this study, it is recommended that the farmer should use the scientific method (LP) in selecting and allocating crops so as to achieve maximum profit. Farmers are encouraged to transition from experience-based decision-making to data-driven strategies for enhanced profitability.

7.0 Funding Statement

The study was financially supported by The Open University of Tanzania through the HEET scholarship.

8.0 Acknowledgments

We would like to acknowledge the District Executive Director of the Iringa districts for permitting us to conduct this study in their districts.

9.0 Declaration of Conflicting Interests

The authors declare no conflict of interest.

10.0 References

Alotaibi, A., & Nadeem, F. (2021). A Review of Applications of Linear Programming to Optimize Agricultural Solutions. *International Journal of Information Engineering and Electronic Business*, 13(2), 11-21. <https://doi.org/10.5815/ijieeb.2021.02.02>

Basnet, B., Luitel, G., Sah, A., Baral, S., & Ghimire, M. (2022). Analysis of profitability and effect of factors of production in paddy cultivation in Morang, Nepal. *Archives of Agriculture and Environmental Science*, 7(3), 425-431. <https://doi.org/10.26832/24566632.2022.0703017>

Bhatia, M. (2020). (PDF) *Linear Programming Approach- Application in Agriculture*. March, 5-8. https://www.researchgate.net/publication/338395440_Linear_Programming_Approach-_Application_in_Agriculture

Biswas, R., Molla, M. M. U., Faisal-E-Alam, M., Zonayet, M., & Castanho, R. A. (2023). Profitability Analysis and Input Use Efficiency of Maize Cultivation in Selected Areas of Bangladesh. *Land*, 12(1), 1-23. <https://doi.org/10.3390/land12010023>

Castillo, G., Ruales, J. H., Seriño, M. V., & Ratilla, T. C. (2021). Gross Margin Analysis of Selected Vegetables Grown Under Protected and Open Field Cultivation in Leyte, Philippines. *Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development*, 21(3), 2021.

Chatare, R. D. (2023). Optimizing Resource Allocation: A Comprehensive Analysis of Linear Programming Formulations and Solution Methods. *Splint International Journal of Professionals*, 10(4), 326-333. <https://doi.org/10.5958/2583-3561.2023.00032.2>

Ganesh Nayak, B., & Ananthi, R. (2024). Profit Optimization in Agricultural Crop Production in Belthangady Taluk Using Linear Programming Models. *Louis Savenien Dupuis Journal of Multidisciplinary Research*, 292-298. <https://doi.org/10.21839/ljsdjm.2024.v3.194>

Handayani, S. (2022). Optimization of Organic Rice Production using Linear Programming Analysis in Lampung Province. *Asia Pacific Journal of Management and Education*, 5(3), 37-47. <https://doi.org/10.32535/apjm.v5i3.1643>

Kryszak, Ł., Guth, M., & Czyżewski, B. (2021). Determinants of farm profitability in the eu regions. Does farm size matter? *Agricultural Economics (Czech Republic)*, 67(3), 90-100. <https://doi.org/10.17221/415/2020-AGRICECON>

Kuznetsova, T., Krasovska, Y., Lesniak, O., Harnaha, O., & Podlevska, O. (2024). Case study on Ukrainian farm gross margin and direct cost analysis of wheat production. *BIO Web of Conferences*, 114. <https://doi.org/10.1051/bioconf/202411401030>

Mukherjee, D. (2005). Role of mathematics in chemistry. *Current Science*, 88(3), 371-373.

Muzhinji, K., & Ndou, N. (2022). a Cash Crop Combination for Maximum Net Income: a Case Study of a Small-Scale Cash Crop Farmer in Vhembe, Limpopo Province, South Africa. *African Journal of Food, Agriculture, Nutrition and Development*, 22(7), 21056-21071. <https://doi.org/10.18697/ajfand.112.21640>

Patel, N., Thaker, M., & Chaudhari, C. (2017). Agricultural Land Allocation to the Major Crops through Linear Programming Model. *International Journal of Science and Research (IJSR)*, 6(4), 2015-2018.

Popescu, A. (2012). *Research on the Use of Gross Margin in the Profitability Analysis of Various Crops - a Case Study: Wheat and Maize in Romania*. 1, 91-95.

RAHAMAN, M. S., SARKAR, M. A. R., RAHMAN, M. C., DEB, L., RASHID, M. M., REZA, M. S., & SIDDIQUE, M. A. B. (2022). Profitability analysis of paddy production in different seasons in Bangladesh: Insights from the Haor. *International Journal of Agriculture Environment and Food Sciences*, 6(3), 327-339. <https://doi.org/10.31015/iaefs.2022.3.1>

Sofi, N. A., Ahmed, A., Ahmad, M., & Bhat, B. A. (2015). Decision Making in Agriculture: A Linear Programming Approach.

International Journal of Modern Mathematical Sciences Journal Homepage:
Www.ModernScientificPress.Com, 13(2),
160-169. www.ModernScientificPress.com
/Journals/ijmms.aspx

TEEB. (2020). *Economics of Ecosystems and Biodiversity in Tanzania: the Case of Southern Highlands of Tanzania Draft Final Scope Finalization and Scenario Development Report. February.*