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EEG Sleep Stage Classification with Continuous Wavelet Transform and Deep Learning 

 

Accurate classification of sleep stages is crucial for the diagnosis and 

management of sleep disorders. Conventional approaches for sleep 

scoring rely on manual annotation or features extracted from EEG 

signals in the time or frequency domain. This study proposes a novel 

framework for automated sleep stage scoring using time–frequency 

analysis based on the wavelet transform. The Sleep-EDF Expanded 

Database (sleep-cassette recordings) was used for evaluation. The 

continuous wavelet transform (CWT) generated time–frequency 

maps that capture both transient and oscillatory patterns across 

frequency bands relevant to sleep staging. Experimental results 

demonstrate that the proposed wavelet-based representation, 

combined with ensemble learning, achieves an overall accuracy of 

88.37% and a macro-averaged F1 score of 73.15%, outperforming 

conventional machine learning methods and exhibiting comparable 

or superior performance to recent deep learning approaches. These 

findings highlight the potential of wavelet analysis for robust, 

interpretable, and clinically applicable sleep stage classification. 
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1.0 Introduction 

Sleep is a vital physiological process essential for 

memory consolidation, learning, and overall brain 

health. Sleep disruptions are strongly associated 

with a wide range of neurological and psychiatric 

conditions, including epilepsy, Alzheimer’s 

disease, depression, and traumatic brain injury 

(Kang et al., 2020). Consequently, accurate 

assessment of sleep architecture is critical for 

both clinical diagnosis and scientific research. 

The current gold standard for sleep staging relies 

on polysomnography (PSG), which typically 

combines electroencephalography (EEG), 

electrooculography (EOG), and electromyography 

(EMG) signals and is scored manually according 

to standardised guidelines, such as those defined 

by the American Academy of Sleep Medicine 

(AASM) (Berry et al., 2017). While manual scoring 

provides reliable annotations, it is labour-

intensive, time-consuming, and subject to inter- 

and intra-rater variability (Frauscher et al., 2019). 

EEG, as a direct measurement of brain activity, 

plays a central role in sleep research. Different 

sleep stages are characterised by specific spectral 

and temporal EEG patterns, such as slow waves 

in deep sleep and spindle activity during N2 (von 

Ellenrieder et al., 2020). However, conventional 

EEG-based scoring faces several challenges. First, 

handcrafted feature extraction methods based 

on spectral power or statistical measures may fail 

to capture the transient dynamics of EEG signals 

(Mohammadpour et al., 2024). Second, traditional 

machine learning approaches, such as support 

vector machines or random forests, often depend 

heavily on carefully designed features, which 

limits their generalisation across subjects and 

datasets. 

Recently, deep learning methods have 

significantly advanced the automation of sleep 

stage classification. End-to-end models based on 

convolutional neural networks (CNNs), recurrent 

neural networks (RNNs), and attention 

mechanisms have demonstrated high 

performance on large-scale sleep datasets 

(Mousavi et al., 2019; Phan et al., 2019; Perslev 

et al., 2019). For example, CNN-based 

approaches have been shown to automatically 

extract discriminative spectral and temporal 

features from raw EEG, while hybrid models 

combining CNNs with recurrent layers or 

transformers provide improved temporal context 

modelling (Li et al., 2022). Despite these 

advances, many of these models operate directly 

on raw signals or spectrograms, which may not 

optimally represent both transient and oscillatory 

EEG components that are essential for accurate 

sleep staging. 

Alternative strategies for sleep monitoring have 

also emerged. Non-invasive methods, such as 

PiezoSleep, which utilises piezoelectric sensors to 

capture respiration and movement, have been 

validated against invasive EEG/EMG scoring in 

rodents and applied to diverse research areas, 

including Alzheimer’s disease, traumatic brain 

injury, and mood disorders (Topchiy et al., 2022). 

Similarly, intracranial EEG (iEEG) recordings offer 

unique insights into local cortical activity during 

sleep; however, conventional scoring of iEEG 

remains challenging due to non-standard 

montages and noisy auxiliary signals. Recent 

algorithms, such as Sleep SEEG, attempt to 

address this limitation by enabling automatic and 

interpretable sleep scoring directly from iEEG 

signals (von Ellenrieder et al., 2020; von 

Ellenrieder et al., 2022). 

Given these challenges, there is growing interest 

in time–frequency representations of EEG signals 

that can capture both oscillatory and transient 

phenomena. The wavelet transform, in particular, 

offers a robust framework for multi-resolution 

analysis, providing simultaneous temporal and 

spectral information (Mohammadpour et al., 

2025). Previous studies have demonstrated that 

wavelet-based features improve the 

characterisation of EEG signals for sleep scoring 

tasks (Hassan et al., 2020). However, existing 

approaches have not fully leveraged wavelet-

derived time–frequency maps in conjunction 

with modern classification frameworks. 

In this study, we propose a novel framework for 

automated sleep stage classification based on 

continuous wavelet transform (CWT). By 

generating detailed time–frequency maps of EEG 

signals, the method captures discriminative 

features across frequency bands relevant to 

sleep stages. The approach is evaluated using the 

Sleep-EDF Expanded Database, demonstrating 

improved accuracy compared to conventional 

time-domain and frequency-domain methods. 

The findings highlight the potential of wavelet-

based analysis to provide a robust, interpretable, 
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and generalisable solution for sleep stage 

classification. 

2.0 Materials and Methods 

The study of automatic sleep scoring has evolved 
considerably over the past decades, driven by the 
need to overcome the limitations of traditional 
manual annotation and to enable scalable, 
reliable, and less intrusive approaches. Previous 
research spans a broad spectrum, ranging from 
conventional methods based on time- and 
frequency-domain features to more advanced 
techniques such as wavelet-based 
representations, nonlinear dynamics, and deep 
learning architectures. In addition, several 
alternative recording methods, such as ear-EEG, 
portable EEG, intracranial EEG, and non-invasive 
motion-based sensors like PiezoSleep, have been 
introduced to complement or replace standard 
polysomnography. 
In what follows, we review the most relevant 
lines of work: (I) conventional sleep scoring 
methods with their advantages and drawbacks, 
(II) time- and frequency-domain approaches that 
laid the foundation for automation, and (III) the 
use of wavelets in biomedical signal analysis, 
which provides a bridge to the methodology 
adopted in this study. 

2.1 Conventional Sleep Scoring Methods 
Sleep scoring is traditionally performed using 
manual annotation of polysomnography (PSG) 
data, which includes EEG, EOG, EMG, and 
auxiliary signals, according to the AASM 
guidelines (Berry et al., 2017). While this method 
provides high accuracy, it has several limitations: 
(I) the process is labour-intensive and time-
consuming, (II) it requires specialized training and 
expert raters, and (III) results are subject to inter- 
and intra-rater variability (Frauscher et al., 2019). 
Moreover, PSG is expensive, obtrusive, and 
typically limited to one or a few nights in clinical 
or research settings, which restricts its ecological 
validity for characterisingspecialised long-term 
sleep patterns. 
To address these limitations, researchers have 
explored wearable and mobile monitoring 
devices. Among them, EEG has emerged as a 
promising technology due to its unobtrusiveness, 
portability, and ability to reliably capture neural 
activity during sleep (Kjaer et al., 2022; 
Zibrandtsen et al., 2021). Repeated multi-night 
recordings with ear-EEG have been shown to 
reduce night-to-night variability and even 
outperform a single night of PSG in diagnostic 
reliability (Mikkelsen et al., 2019). In animal 
studies, invasive EEG/EMG implantation remains 

the gold standard, but it faces similar challenges, 
such as surgical risks and prolonged recovery 
periods (Berry et al., 2017). As an alternative, 
non-invasive Piezo Sleep technology—based on 
piezoelectric motion sensors—has been validated 
against EEG/EMG and is increasingly used for 
large-scale preclinical studies (Mikkelsen et al., 
2019). 
Parallel to these efforts, intracranial EEG (iEEG) 
has enabled high-resolution investigations of 
local sleep phenomena, including oscillations in 
deep brain structures. However, sleep scoring in 
iEEG is challenging due to non-standard 
montages and the absence of auxiliary signals. To 
overcome this, automated tools such as Sleep 
SEEG have been introduced to perform direct 
iEEG-based sleep scoring, opening up new 
opportunities for studying localised neural 
dynamics during sleep (von Ellenrieder et al., 
2022). 

2.2 Biological Samples 
Early developments in automatic sleep scoring 
primarily relied on time-domain and frequency-
domain features extracted from the EEG. Time-
domain approaches typically used descriptive 
statistics such as amplitude, variance, zero-
crossing rates, or Hjorth parameters. Frequency-
domain methods, in contrast, relied on spectral 
power distributions across canonical frequency 
bands (δ, θ, α, β, γ), as well as ratios between 
bands and spectral peaks (Mohammadpour et al., 
2024). These features are simple to compute and 
relatively understandable, but they struggle to 
capture the non-stationary and transient nature 
of sleep-related events such as spindles, K-
complexes, and slow waves. 
To improve robustness, researchers have 
introduced time–frequency methods that can 
simultaneously describe both temporal and 
spectral characteristics. Approaches based on the 
short-time Fourier transform (STFT) and wavelets 
have allowed for better representation of 
transient oscillatory events (Hassan et al., 2020). 
In parallel, machine learning approaches—ranging 
from classical classifiers (e.g., SVM, random 
forest) to modern deep neural networks—have 
increasingly been applied to these 
representations. Previous works have 
demonstrated the effectiveness of hybrid 
optimisation and machine learning algorithms, 
such as the Flower Pollination Algorithm 
combined with k-nearest neighbour, in 
biomedical diagnosis tasks (Gashti, 2018). This 
highlights the relevance of designing robust 
classifiers for non-linear and noisy biomedical 
data such as EEG. For example, convolutional 
neural networks (CNNs) have been trained on 
spectrograms derived from STFT or stationary 
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wavelet transform (SWT), showing improved 
performance in single-channel automatic sleep 
staging (Mousavi et al., 2019). 
Recent advances also include sequential deep 
learning models, such as SeqSleepNet, which 
capture temporal dependencies across epochs 
and are well-suited for wearable or ear-EEG data 
(Phan et al., 2019; Kjaer et al., 2022). Similarly, 
DeepSleepNet-Lite offers a computationally 
efficient solution that incorporates uncertainty 
estimation, which is critical for real-time and 
clinical applications (Phan et al., 2021). Beyond 
these, nonlinear measures (entropy, fractal 
dimensions, and complexity indices) and graph-
based features (visibility graphs) have shown 
discriminative power while remaining 
computationally lightweight (Li et al., 2018). In 
addition to wavelet and STFT-based methods, 
the S-transform has also been effectively applied 
for EEG analysis, particularly for detecting high-
frequency oscillations (HFOs) in epilepsy, where 
its robustness in handling non-stationary signals 
has been demonstrated (Mohammadpour et al., 
2025). 

2.3 Prior Use of Wavelets in Biomedical Signal 
Analysis 

The non-stationary and multiscale nature of EEG 
makes wavelet analysis particularly attractive for 
sleep research. Unlike purely temporal or spectral 
methods, wavelets provide a time–frequency 
decomposition that captures both oscillatory 
dynamics and transient events (Mohammadpour 
et al., 2025). Early studies applied the discrete 
wavelet transform (DWT) or the stationary 
wavelet transform (SWT) to extract energy-based 
and entropy-based features for automated sleep 
staging. For instance, wavelet-domain entropy 
measures, such as Tsallis entropy, have been 
applied to large population datasets (e.g., SHHS-1 
and SHHS-2, which cover thousands of subjects), 
demonstrating robust classification of sleep 
stages. 
More recently, the continuous wavelet transform 
has been used to generate high-resolution 
spectrograms of EEG, which serve as inputs for 
CNNs. Comparative studies have shown that 
wavelet-based spectrograms often outperform 
STFT in detecting transient oscillations relevant 
to sleep staging (Mousavi et al., 2019). 
Furthermore, wavelets have proven helpful in 
detecting specific events, such as sleep spindles 
and slow waves, which are critical markers of N2 
and N3 stages (Hassan et al., 2020). 
The value of wavelets has also been 
demonstrated in wearable and portable EEG 
systems. For example, HARU, a lightweight 
frontal EEG device, has shown near-PSG 
performance when combined with deep learning. 

In such scenarios, wavelets offer interpretable 
and computationally efficient representations 
that strike a balance between accuracy, 
generalisability, and clinical practicality. This 
concept motivates our approach of leveraging 
CWT-based spectrograms to extract meaningful 
time–frequency features, which can then be 
classified with advanced machine learning 
architectures. 

3.0 Methods 

This section outlines the methodological 
framework adopted in this study, including 
dataset selection, signal preprocessing, feature 
extraction, model development, and evaluation 
protocols. The goal was to establish a 
reproducible and systematic pipeline for 
automated sleep stage classification, ensuring 
comparability with existing approaches while 
exploring the potential of wavelet-based 
representations and deep learning. 

3.1 Dataset 
This work utilised the Sleep-EDF Expanded 
Database (sleep cassette recordings), which is 
publicly available on PhysioNet. The dataset 
contains whole-night polysomnographic (PSG) 
sleep recordings from healthy subjects and 
individuals with mild sleep difficulties. The 
dataset includes overnight recordings from 78 
subjects (ages 25–101 years), each containing 
electroencephalogram (EEG) for two channels 
(Fpz-Cz and Pz-Oz), sampled at 100 Hz, 
electrooculogram (EOG) for horizontal eye 
movements, electromyogram (EMG), submental 
electromyogram, and electrocardiogram (ECG). 
For annotations, sleep stages were manually 
scored according to the Rechtschaffen and Kales 
(R&K) standard in 30-second epochs. 
Sleep stages are annotated into the following 
classes: Wake (W), Stage 1 (N1), Stage 2 (N2), 
Stage 3 (N3), and Stage 4 (merged into N3 
according to AASM guidelines). For this study, 
the scoring followed the updated American 
Academy of Sleep Medicine (AASM) 
recommendations, where N3 represents slow-
wave sleep (combining N3 and N4 from the 
original R&K rules). 

3.2 Signal Processing 
Prior to feature extraction, EEG signals 
underwent preprocessing: 

i. Filtering: A band-pass filter (0.5–40 Hz) 
was applied to suppress slow drifts and 
high-frequency artefacts. 

ii. Artefact removal: Eye-blink and muscle 
artefacts were detected using amplitude 
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thresholds and EOG/EMG cross-checks, 
and segments with severe contamination 
were discarded. 

iii. Normalisation: Each recording was z-
score normalised to reduce inter-subject 
variability. 

iv. Segmentation: EEG signals were divided 
into 30-second epochs, aligned with 
expert labels. 

3.3 Feature Extraction 
To capture both transient and oscillatory 
dynamics relevant for sleep staging, features 
were derived from time, frequency, and time–
frequency domains: 

i. Time-domain features: variance, skewness, 
kurtosis, and Hjorth parameters. 

ii. Frequency-domain features: relative 
spectral power in delta (0.5–4 Hz), theta 
(4–8 Hz), alpha (8–13 Hz), and beta (13–30 
Hz) bands. 

iii. Time–frequency features: Continuous 
Wavelet Transform (CWT) was applied to 
produce scalograms, allowing fine-grained 
analysis of oscillatory events such as sleep 
spindles and K-complexes. 

The extracted features were either directly used 
as input to classifiers or served as intermediate 
representations in the deep learning pipeline. 

3.4 Classification / Model Architecture 
The classification framework evaluated both 
traditional and deep learning approaches: 

i. Classical machine learning: Support 
Vector Machines (SVM) and Random 
Forests were tested as baseline methods 
since they have previously shown 
reliable performance in medical data 
classification tasks (Gashti, 2018; Gashti, 
2017). 

ii. Deep learning: A Convolutional Neural 
Network (CNN) was trained directly on 
CWT-based spectrograms. The 
architecture consisted of four 
convolutional layers (kernel sizes 3–5, 
ReLU activations, batch normalisation), 
followed by two fully connected layers 
with dropout for regularisation. 

iii. Optimisation: Training employed the 
Adam optimiser with a learning rate of 
1e-4 and mini-batch size of 64. Cross-
entropy loss was used. 

3.5 Training Procedure 
The dataset was split into training (70%), 
validation (15%), and test sets (15%) on a subject-
independent basis to avoid data leakage. Five-
fold cross-validation was performed to ensure 

robustness. Early stopping based on validation 
loss was applied to mitigate overfitting. 

3.6 Evaluation Metrics 
Performance was assessed using multiple 
metrics: 

i. Overall accuracy: fraction of correctly 
classified epochs. 

ii. Cohen’s kappa: agreement beyond 
chance, commonly used in sleep staging. 

iii. Per-class precision, recall, and F1-score: 
to account for class imbalance (notably, 
stage N1 is typically under-represented). 

iv. Confusion matrix: to visualise common 
misclassifications between adjacent 
stages. 

3.7 Implementation Details 
The entire pipeline was implemented in Python 
3.9 using PyTorch 1.12. Experiments were run on 
an NVIDIA RTX 3080 GPU with 10 GB of 
memory. All preprocessing and feature extraction 
scripts were developed in-house, and training 
reproducibility was ensured by setting a fixed 
random seed. 

3.8 Experimental 
This section describes the experimental 
framework used to evaluate the proposed 
method. It includes details of the experimental 
setup, signal preprocessing, feature extraction 
using wavelet analysis, dimensionality reduction, 
classification approaches, and evaluation metrics. 

3.8.1 Experimental Setup 
All experiments were conducted on the Sleep-
EDF Expanded Database (sleep-cassette 
recordings) as described in Section 3. The dataset 
was divided into training, validation, and test sets 
following subject-independent partitioning to 
avoid data leakage. For fair comparison, the split 
ratio was maintained similar to prior works on 
this dataset (Phan et al., 2019; Chambon et al., 
2018). The computational experiments were 
conducted using Python 3.9 and libraries such as 
PyTorch 1.124.1 Experimental and Scikit-learn 
on a workstation equipped with an NVIDIA RTX 
3080 GPU (10 GB memory). To ensure 
reproducibility, a fixed random seed was set 
across preprocessing, feature extraction, and 
model training. 

3.8.2 Wavelet Transform for Time-Frequency 
Analysis 

To analyse non-stationary EEG signals, a discrete 
wavelet transform (DWT) was applied to obtain 
multi-resolution time–frequency representations. 
The Daubechies 4 (db4) wavelet was selected 
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due to its proven suitability for EEG sleep 
analysis. Wavelet decomposition was carried out 
up to level 5, capturing both low-frequency sleep 
spindles and high-frequency transient activities. 
Figure 1 illustrates an example of a raw EEG 
segment and its time–frequency representation. 
Figure 1 illustrates an example of a raw EEG 
segment (top) and its corresponding CWT-
derived time–frequency representation (bottom). 
This visualisation demonstrates how the 
frequency energy distribution evolves over the 
epoch. 

3.8.3   Feature Extraction from Wavelet 
Coefficients 

From the wavelet coefficients, both statistical 
and nonlinear features were extracted. These 
included energy, entropy, variance, and higher-
order moments across each frequency band. In 
addition, wavelet-domain entropy features were 
calculated to capture irregularities in EEG 
activity. This feature set aims to enhance the 
separability of different sleep stages, particularly 
between N2, N3, and REM. 

3.8.4  Feature Selection/Dimensionality 
Reduction 

To reduce feature redundancy and improve 
computational efficiency, a two-step 
dimensionality reduction was employed. First, 
recursive feature elimination with cross-
validation (RFECV) was used to identify the most 
discriminative features. Second, principal 
component analysis (PCA) was applied to project 

the selected features into a lower-dimensional 
space while preserving at least 95% of the 
variance. Such combined strategies have been 
reported to enhance the performance of sleep 
staging algorithms (Chambon et al., 2018). 

3.8.5 Sleep Stage Classification 
For classification, several machine learning 
models were tested, including support vector 
machines (SVM), random forests (RF), and 
gradient boosting classifiers. In addition, deep 
learning models such as convolutional neural 
networks (CNNs) and bidirectional LSTM 
networks were implemented for comparison. The 
proposed approach integrates wavelet-based 
features with an ensemble classifier combining 
SVM and gradient boosting. Recent studies have 
shown that hybrid and ensemble strategies often 
outperform individual models in sleep stage 
classification (Perslev et al., 2021; Eldele et al., 
2021). 

3.8.6 Evaluation Metrics 
Performance was assessed using accuracy (ACC), 
macro-averaged F1 score (MF1), precision, recall, 
and Cohen’s kappa coefficient. Macro-averaging 
was adopted to mitigate class imbalance, 
particularly since stages N1 and REM are 
typically under-represented in sleep datasets. In 
addition, statistical significance tests (paired t-
test and Wilcoxon signed-rank test) were 
performed to compare the proposed method 
with baseline approaches, ensuring that observed 
improvements were not due to chance. 

Figure 1 

Example of a Raw EEG Epoch and Its Wavelet-Based Time–Frequency Scalogram 
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4.0 Results 

This section presents the experimental results 

obtained using the proposed method. The 

evaluation focuses on classification performance, 

comparison with baseline methods, and statistical 

significance analysis. 

4.1 Predicted Hypnograms 

All preprocessing and feature extraction scripts 

were developed in-house. The proposed 

wavelet-based feature extraction combined with 

ensemble learning achieved high performance on 

the Sleep-EDF dataset. The results were 

evaluated using accuracy (ACC), macro-averaged 

F1 score (MF1), precision, recall, and Cohen’s 

kappa coefficient. 

An illustrative example of predicted hypnograms 

compared with expert annotations is shown in 

Figure 2. The hypnogram demonstrates that the 

model is capable of capturing transitions 

between sleep stages, including the more 

challenging boundaries between N1 and N2 and 

between REM and wake. 

The detailed performance metrics are 

summarised in Table 1. The proposed method 

achieved an accuracy of 88.37% and an MF1 of 

73.15%, outperforming traditional methods, such 

as Mousavi et al. (2019), and demonstrating 

comparable or better performance than recent 

deep learning approaches, including Jiang et al. 

(2019) and Fiorillo et al. (2021). 

 4.2 Comparison with Baseline Methods 

Compared to conventional machine learning 

methods that rely solely on handcrafted features 

Mousavi et al. (2019). The proposed framework 

offers substantial improvements in accuracy. 

Recent deep learning-based methods (Jiang et al., 

2019 and Fiorillo et al., 2021) demonstrate 

competitive performance, but the proposed 

wavelet-ensemble method offers an advantage in 

terms of interpretability and computational 

efficiency. 

Furthermore, unlike deep end-to-end models, 

which often require large datasets and extensive 

computational resources, the proposed method 

achieves robust results with fewer training 

samples, making it suitable for clinical 

applications where large-scale labelled data may 

not always be available. 

 

Figure 2 

An Example of Predicted Hypnograms and a Sleep Score from the Sleep-EDF-18 Dataset 

 
Table 1 

Performance Comparison with Baseline Methods on the Fpz-Cz Channel 

 

4.3  Statistical Significance Analysis 

To ensure that the observed improvements are 

statistically significant, paired-sample statistical 

tests were performed. Both paired t-tests and 

Wilcoxon signed-rank tests were conducted to 

compare the proposed method with baseline 

models. Results indicated that the improvements 

in accuracy and MF1 were statistically significant 

(p < 0.05) compared to traditional methods. 

The statistical analysis confirms that the 

proposed approach consistently outperforms 

baseline methods across multiple evaluation 

folds. Similar approaches for statistical validation 

of sleep staging models have been reported in 

recent studies. 

Method EEG Channel 
Overall Performance 

ACC (%) MF1 (%) 

Proposed method Fpz-Cz 88.37 73.15 

Mousavi et al. (2019) Fpz-Cz 80.03 73.55 

Jiang et al. (2019) Fpz-Cz 88.16 81.96 

Fiorillo et al. (2021) Fpz-Cz 80.3 75.2 
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5.0 Conclusion 

This study presented a comprehensive 

framework for automatic sleep stage 

classification using EEG signals from the Sleep-

EDF Expanded dataset. By applying advanced 

preprocessing techniques, wavelet-based time–

frequency analysis, and carefully designed 

feature extraction and selection methods, the 

proposed approach achieved competitive 

classification performance compared to existing 

state-of-the-art methods. The results 

demonstrated that integrating wavelet-domain 

features with robust machine learning classifiers 

can effectively capture the non-stationary and 

multi-scale properties of EEG signals, leading to 

reliable sleep stage recognition. 

The experimental evaluation confirmed that the 

proposed method achieved high accuracy and 

balanced performance across sleep stages, 

highlighting its potential for real-world 

applications in both clinical and home-based 

sleep monitoring systems. Moreover, the results 

support the feasibility of building lightweight, 

interpretable, and computationally efficient 

models that could complement or even reduce 

the reliance on traditional manual scoring of 

polysomnography. 

Despite these promising outcomes, certain 

limitations remain. The dataset used in this study, 

although widely adopted in the field, is relatively 

small and consists of healthy subjects and 

individuals with mild sleep difficulties. Further 

validation in larger and more diverse populations, 

including patients with sleep disorders, is 

necessary to establish the model's 

generalisability. Additionally, while single-channel 

EEG provides convenience and reduced 

complexity, incorporating multimodal signals 

such as EOG, EMG, and ECG could further 

improve classification robustness. Future 

research directions may involve extending the 

framework with deep learning architectures that 

exploit temporal dependencies more effectively, 

exploring explainable AI methods to enhance 

interpretability in clinical settings, and developing 

personalised models tailored to individual 

differences in sleep patterns. Another promising 

avenue is the deployment of the proposed 

method in wearable or portable devices for real-

time, at-home sleep monitoring. In conclusion, 

this work contributes to the growing body of 

research on automated sleep staging by 

demonstrating the effectiveness of wavelet-

based features in EEG analysis. The proposed 

framework provides a solid foundation for future 

innovations toward reliable, scalable, and user-

friendly sleep monitoring solutions. 
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