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Critical Review of the Percentage of Cumulative Oil Production with Sequential Quadratic 
Programming Technique for Gas Lifted Wells 

 

Gas lift optimisation presents a complex, nonlinear constrained 
problem in petroleum engineering, where dynamic well 
interactions, multiphase flow behaviour, and stringent operational 
constraints pose significant computational challenges. This study 
systematically reviews the application of Sequential Quadratic 
Programming (SQP) as an advanced numerical optimisation 
technique for gas lift performance enhancement. SQP’s 
mathematical foundation, rooted in second-order approximations 
of the objective function and constraints, leverages Hessian 
approximations and Lagrange multipliers to achieve superior 
solution accuracy and convergence efficiency. Comparative 
analyses demonstrate SQP’s superiority over conventional 
optimisation methods such as Mixed-Integer Linear Programming 
(MILP) and the Augmented Lagrangian (AL) method. Unlike MILP, 
which struggles with nonlinear deliverability constraints, and AL, 
which exhibits minor constraint violations, SQP ensures strict 
constraint adherence while optimising gas injection rates. The 
method’s computational efficiency is attributed to advanced 
gradient estimation, parallel processing capabilities, and QR 
factorisation updates, making it highly effective for large-scale gas 
lift networks. Notably, SQP-driven optimisation has been shown to 
improve Net Present Value (NPV) by up to 42% and increase oil 
production by 45% through optimal gas allocation and stabilisation 
of intermittent flow regimes. Furthermore, the adaptability of SQP 
for real-time optimisation enables its seamless integration into 
industry-standard production simulation tools such as PROSPER, 
GAP, and OLGA, facilitating dynamic field-wide gas lift 
coordination. Emerging hybrid SQP frameworks, incorporating 
augmented Lagrangian strategies and nonlinear steady-state 
optimisation, further enhance solution robustness and economic 
performance. Crucially, SQP’s ability to model real-world 
constraints—including reservoir pressure limits, gas-lift 
performance curves, and fluctuating operational conditions—
demonstrates its viability for practical implementation in complex 
petroleum production systems. This review establishes SQP as a 
transformative optimisation framework for gas lift operations, 
bridging theoretical advancements with real-world applicability. 
The findings underscore SQP’s computational and economic 
advantages over conventional methods while paving the way for 
future research into hybridised algorithms and real-time adaptive 
gas lift control in large-scale petroleum production networks. 
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1.0 Introduction 

Gas lift optimisation is a crucial aspect of 

production engineering that aims to enhance oil 

recovery from wells by efficiently injecting gas to 

reduce fluid density and improve lift performance. 

Given the increasing complexity of oil and gas 

reservoirs, optimising gas lift operations is 

essential for maximising production while 

minimising operational costs (Abdalsadig et al., 

2016). Traditional gas lift optimisation techniques 

often rely on heuristic methods, empirical 

correlations, or simple rule-based approaches. 

While these methods offer some degree of 

efficiency, they lack the robustness and 

adaptability required to handle the nonlinear, 

constrained, and multi-variable nature of gas lift 

systems. Consequently, numerical optimisation 

techniques have gained prominence in recent 

years, providing more systematic and 

mathematically rigorous approaches to solving gas 

lift problems (Pacheco et al., 2023). 

Numerical optimisation methods provide 

systematic frameworks for solving gas lift 

optimisation problems by identifying the optimal 

injection gas rates and lift point locations. Various 

algorithms have been proposed to address these 

challenges, ranging from classical mathematical 

optimisation techniques to modern machine 

learning-based approaches. Among numerical 

optimisation methods, Sequential Quadratic 

Programming (SQP) has emerged as one of the 

most effective approaches for handling 

constrained nonlinear optimisation problems such 

as gas lift allocation (Ihua-Maduenyi & Oguta, 

2025; Salehian et al., 2021). SQP is a gradient-

based method that iteratively solves a sequence 

of quadratic programming subproblems to 

approximate the solution of a nonlinear 

programming problem. It efficiently handles 

equality and inequality constraints while ensuring 

convergence to a local optimum. The application 

of SQP to gas lift optimisation is particularly 

attractive because gas lift operations involve 

complex physical models, including multiphase 

flow behaviour, pressure-volume-temperature 

(PVT) relationships, and wellbore hydraulics, 

which introduce strong nonlinearities and 

constraints that must be satisfied for practical 

feasibility (Noorbakhsh & Khamehchi, 2020). 

One of the key advantages of SQP in gas lift 

optimisation is its ability to systematically account 

for both reservoir and operational constraints. 

Unlike simpler optimisation methods such as 

gradient descent or genetic algorithms, SQP 

explicitly incorporates second-order information 

through the Hessian matrix, allowing for more 

accurate search directions and faster convergence 

rates (Al-Mansory et al., 2024). This feature is 

particularly beneficial in gas lift systems, where 

the response surface is often highly nonlinear, and 

an efficient optimisation algorithm must navigate 

complex feasibility regions to achieve optimal gas 

allocation. Additionally, SQP's robustness in 

handling inequality constraints ensures that 

operational limits, such as compressor capacity, 

tubing pressure, and gas injection rates, are 

consistently respected throughout the 

optimisation process (Zhong et al., 2022). 

Comparatively, heuristic-based methods such as 

trial-and-error or rule-based optimisation 

approaches are limited by their dependence on 

empirical knowledge and lack of scalability when 

dealing with large-scale gas lift networks. While 

evolutionary algorithms like genetic algorithms 

(GA) and particle swarm optimisation (PSO) offer 

alternative optimisation strategies, they generally 

require a large number of function evaluations and 

lack the deterministic convergence guarantees 

that SQP provides. Metaheuristic approaches 

often struggle with constraint satisfaction, making 

them less reliable for applications where strict 

operational and engineering constraints must be 

maintained. In contrast, SQP efficiently converges 

to feasible and near-optimal solutions within a 

relatively small number of iterations, making it a 

preferred choice for gas lift optimisation 

(Vazquez-Roman & Palafox-Hernández, 2005). 

Furthermore, the adaptability of SQP to different 

gas lift scenarios makes it particularly suitable for 

field-wide optimisation. Given that gas lift 

operations involve multiple wells with varying 

production characteristics, an optimisation 

approach must be capable of dynamically 

adjusting gas injection rates based on real-time 

production data (Sharma et al., 2012). SQP, with 

its ability to integrate with real-time reservoir and 

well models, provides a structured framework for 

adaptive optimisation, ensuring that production 

targets are met while minimising gas usage. This 

adaptability also allows for seamless integration 

with digital oilfield technologies, such as 

production monitoring systems and artificial 
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intelligence-driven predictive models, further 

enhancing the efficiency and reliability of gas lift 

optimisation strategies (Tewari & Agrawal, 2022). 

The implementation of SQP in gas lift optimisation 

also has significant economic and environmental 

implications. By ensuring optimal gas allocation, 

SQP minimises unnecessary gas consumption, 

leading to reduced operational costs and 

improved energy efficiency (Sreenivasan et al., 

2023). This is particularly important in mature 

fields where gas availability may be limited, and 

excessive gas injection can lead to diminishing 

returns in oil production. Moreover, efficient gas 

lift optimisation contributes to sustainability by 

reducing greenhouse gas emissions associated 

with gas compression and injection. As the oil and 

gas industry continues to prioritise operational 

efficiency and environmental responsibility, 

adopting advanced optimisation techniques such 

as SQP becomes increasingly valuable (Tavakoli et 

al., 2017). 

2.0 Gas Lift Optimisation 

Gas lift optimisation is a crucial process in 

petroleum production engineering; it ensures that 

oil recovery is maximised while minimising 

operational costs. Gas lift optimisation primarily 

revolves around selecting the optimal volume of 

gas to inject into a set of wells to enhance oil 

production. Since lift gas is both a valuable and 

costly resource, excessive injection can lead to 

diminishing returns due to frictional constraints, 

while insufficient gas injection results in 

suboptimal production rates (Salehian et al., 

2021). 

The fundamental principle behind gas lift is that 

injecting gas into the production tubing reduces 

the hydrostatic pressure, thereby lowering the 

fluid density and allowing for an increased oil 

production rate. However, increasing the injection 

rate beyond an optimal point leads to excessive 

pressure drops due to frictional losses, which 

ultimately counteract the benefits of gas lift 

(Pacheco et al., 2023). This relationship is 

captured in the Gas Lift Performance Curve 

(GLPC), a dome-shaped curve that illustrates how 

production rates vary with different gas injection 

rates. The GLPC highlights that under-injection 

leads to lower production, whereas excessive 

injection causes production decline and increased 

operational expenses (Okorocha et al., 2020). 

When optimising gas lift at the well level, various 

operational parameters must be considered, such 

as fluid composition, tubing geometry, pressure 

conditions, and completion type (Obong et al., 

2022). A well-based approach typically involves 

conducting step-rate gas injection tests and 

analysing the data to determine the most effective 

injection strategy. Single-well optimisation 

focuses on modelling individual well behaviour, 

employing either black-oil models or more 

detailed computational fluid dynamics simulations 

to generate accurate lift performance curves 

(Okorocha et al., 2022). These curves help in 

determining the optimal gas injection rate for 

maximising production under given well 

conditions. Although nodal analysis techniques 

are widely used, they offer an incomplete field-

wide solution because they don't capture 

interactions between wells. 

A key challenge in well-based gas lift optimisation 

is the inability to capture interdependencies 

among multiple wells sharing a common lift gas 

supply. In multi-well systems, gas allocation must 

be strategically managed to ensure that gas is 

distributed effectively among the wells to achieve 

maximum overall production. Without proper 

optimisation, allocating excessive gas to certain 

wells can lead to suboptimal production from 

other wells due to backpressure effects and 

network constraints. The gas injection pressure 

and available lift gas volume impose additional 

limitations on well-based optimisation, 

necessitating a broader field-wide perspective 

(Okafor & Loyibo, 2024). 

Field-based gas lift optimisation differs 

significantly from well-based optimisation in that 

it takes into account the entire network of 

interconnected wells and associated surface 

facilities. Unlike single-well optimisation, field-

wide optimisation considers factors such as 

flowline pressure drops, compressor limitations, 

separator capacities, and water-handling 

constraints (Abdalsadig et al., 2016). The 

complexity of field-based optimisation arises from 

the dynamic interactions between wells, where 

changes in the gas injection rate of one well can 

influence the pressure conditions and production 

performance of other wells within the network. 

Addressing these interdependencies is critical for 



MUST Journal of Research and Development (MJRD) Volume 6 Issue 3, September 2025 
e ISSN 2683-6467 & p ISSN 2683-6475 

 

369 
 

achieving an optimal allocation of lift gas that 

maximises total field production while adhering to 

facility constraints (Adukwu et al., 2023). 

Several challenges complicate field-wide gas lift 

optimisation. Limited gas availability necessitates 

strategic allocation to ensure that the wells with 

the highest production potential receive an 

adequate gas supply. Additionally, backpressure 

effects caused by gas injection and production 

from interconnected wells can lead to suboptimal 

performance if not properly managed 

(Sreenivasan et al., 2024). Surface equipment 

constraints, such as compressor capacity and 

separator limitations, further restrict the total 

amount of gas that can be injected and the volume 

of produced fluids that can be handled. Moreover, 

unexpected issues such as well shut-ins and 

workovers introduce additional complexities that 

must be accounted for in the optimisation process 

(Hannanu et al., 2024). 

Optimisation methods for gas lift allocation can be 

broadly categorised into numerical and heuristic 

approaches. Numerical methods involve 

mathematical optimisation techniques such as 

linear programming, nonlinear programming, and 

dynamic programming (Agwu et al., 2024). These 

methods rely on well-defined objective functions 

and constraints to determine the optimal gas 

allocation strategy. Sequential Quadratic 

Programming (SQP) is one of the most effective 

numerical techniques used in gas lift optimisation, 

as it efficiently handles nonlinear constraints and 

provides accurate solutions for complex multi-

well optimisation problems (Ihua-Maduenyi & 

Oguta, 2025). SQP iteratively approximates the 

solution using a series of quadratic subproblems, 

making it particularly useful for optimising large-

scale field networks where interactions between 

wells must be considered (Rostamian et al., 2024). 

Heuristic optimisation methods, such as genetic 

algorithms, particle swarm optimisation, and 

simulated annealing, have also been widely 

applied to gas lift optimisation problems (Avriel, 

2020). These methods are particularly beneficial 

when dealing with highly complex and nonlinear 

field models where traditional numerical 

techniques struggle to converge to a global 

optimum. Heuristic approaches explore a broad 

solution space using adaptive search strategies, 

making them suitable for optimising gas allocation 

under uncertainty and varying operational 

conditions. However, these methods require 

significant computational effort and may not 

always guarantee globally optimal solutions 

(Jonatian, 2024). 

Incorporating real-time data analytics and artificial 

intelligence (AI) has further enhanced gas lift 

optimisation efforts (Ihua-Maduenyi & Yelebe, 

2025). Machine learning models can analyse 

historical production data and predict optimal gas 

injection rates based on real-time well conditions. 

By integrating AI-driven optimisation techniques 

with advanced reservoir simulation models, 

operators can dynamically adjust gas lift allocation 

strategies to maximise production efficiency 

(Zeinilabedini & Ameli, 2025). Digital twins, which 

create virtual representations of field operations, 

enable real-time monitoring and optimisation by 

simulating different gas injection scenarios and 

identifying the best course of action based on 

current field conditions. 

Despite the advancements in gas lift optimisation 

methodologies, several challenges remain. 

Accurate modelling of well and field performance 

requires high-quality data, which is not always 

readily available. Variations in reservoir 

conditions, fluid properties, and equipment 

performance introduce uncertainties that must be 

accounted for in optimisation models (Ahmed et 

al., 2023). Additionally, implementing optimisation 

recommendations in real-world operations 

requires seamless integration with existing 

production management systems and control 

infrastructure. 

The comparison of well-based and field-based gas 

lift optimisations is presented in Table 1. 

Table 1 

Comparison of Well-Based and Field-Based Gas Lift Optimisations 
Aspect Well-Based Optimisation Field-Based Optimisation 

Focus Individual well performance Entire field network performance 
Key Parameters Injection rate, depth, tubing diameter, pressure Gas allocation, backpressure, separator limits 
Complexity Lower complexity, localized analysis Higher complexity, requires network modeling 
Interaction Effects Does not consider inter-well dependencies Accounts for interactions among wells 
Optimisation Scope Maximising single-well output Maximising total field production 
Constraints Well-level constraints (e.g., tubing size) Field-wide constraints (e.g., gas availability) 
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3.0  Sequential Quadratic Programming  

3.1 History of Sequential Quadratic Programming 

The Sequential Quadratic Programming (SQP) 

method has a rich history in the field of numerical 

optimisation, tracing back to the 1960s and 

1970s. The method emerged as a powerful 

technique for solving nonlinear constrained 

optimisation problems, building upon principles of 

quadratic approximation and iterative refinement. 

SQP evolved as an extension of Newton's method 

applied to constrained optimisation, aiming to 

iteratively approximate and solve a sequence of 

quadratic programming subproblems. Early 

developments were driven by the need for 

efficient numerical solutions in mathematical 

programming, with pioneering contributions from 

researchers such as Wilson (1963) and Han 

(1977), who formalised the use of quadratic 

programming in constrained optimisation. Powell 

(1978) and Boggs & Tolle (1995) further refined 

the technique, introducing robust algorithms for 

handling both equality and inequality constraints 

(Bomze et al., 2010). 

As SQP matured, it found widespread applications 

across engineering disciplines, where optimisation 

problems are often nonlinear and constrained by 

complex physical and operational constraints 

(Noorbakhsh and Khamehchi, 2020). In 

mechanical engineering, SQP has been 

extensively used in structural optimisation, 

aerodynamics, and robotics, where precise control 

over parameters is essential (Krishnamoorthy et 

al., 2019). The aerospace industry has leveraged 

SQP for trajectory optimisation, flight control, and 

spacecraft guidance, benefiting from its ability to 

efficiently handle multiple nonlinear constraints. 

Similarly, in electrical and control engineering, 

SQP has been applied to optimal control 

problems, power system optimisation, and signal 

processing, demonstrating its versatility and 

effectiveness in handling large-scale engineering 

challenges (Bandekian, 2023). 

Sequential Quadratic Programming (SQP) has 

played a crucial role in petroleum engineering, 

particularly in reservoir management, production 

planning, and artificial lift systems. The ability of 

SQP to handle nonlinear optimisation problems 

with constraints has made it a preferred choice for 

tackling complex engineering challenges 

(Krishnamoorthy et al., 2018). In petroleum 

engineering, it has been extensively utilised for 

optimising well placement, refining reservoir 

simulation models, and improving production 

strategies by determining the most effective 

operating conditions. Its flexibility and efficiency 

in solving multi-variable and multi-constraint 

problems make it indispensable in the field 

(Krishnamoorthy et al., 2019). 

A particularly significant application of SQP in 

petroleum engineering is in gas lift optimisation, 

where precise control of gas injection rates is 

crucial for maximising oil production while 

minimising operational costs. Gas lift, an artificial 

lift technique, relies on injecting gas into the 

wellbore to reduce hydrostatic pressure and 

enhance oil flow (Liu et al., 2018). Traditional 

optimisation methods, such as nodal analysis, 

have been effective for single-well scenarios but 

struggle with the complexity of interconnected 

gas-lifted field networks. SQP overcomes this 

limitation by incorporating nonlinear constraints 

related to fluid flow dynamics, gas allocation, and 

facility constraints. It enables production 

engineers to determine the optimal gas injection 

rates for each well in a network while accounting 

for backpressure effects and well 

interdependencies (Lu et al., 2016). 

The use of SQP in gas lift optimisation involves 

modelling the relationship between gas injection 

rates and oil production while considering factors 

such as well interactions, backpressure, and 

compressor limitations. The iterative structure of 

SQP facilitates continuous adjustments to gas 

injection strategies, ensuring solutions remain 

feasible within operational constraints. Moreover, 

SQP has been integrated into real-time 

optimisation frameworks, working alongside 

production monitoring systems to dynamically 

adapt gas lift parameters based on evolving 

reservoir conditions. This adaptability enhances 

both the efficiency and effectiveness of gas lift 

operations (Bomze, 2010; Curtis et al., 2012). 

Researchers have extensively explored SQP-

based gas lift optimisation models to improve gas 

allocation strategies across multi-well systems. 

These models aim to maximise overall field 

production by distributing the available lift gas in 

an optimal manner. To enhance computational 

efficiency, hybrid approaches have emerged, 

combining SQP with heuristic optimisation 
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techniques such as genetic algorithms and particle 

swarm optimisation. These hybrid methodologies 

leverage the robustness of SQP in handling 

constraints while utilising heuristic methods to 

explore a broader solution space efficiently (Ihua-

Maduenyi & Oguta, 2025; Mehregan et al., 2016). 

The practical effectiveness of SQP in gas lift 

optimisation has been demonstrated through 

numerous field applications and case studies. 

Studies have consistently shown that SQP-driven 

optimisation can significantly enhance oil 

recovery, leading to substantial financial benefits 

for operators. The integration of SQP into 

commercial production optimisation software 

allows engineers to systematically analyse and 

refine gas injection strategies, ensuring long-term 

sustainability and operational efficiency. 

Additionally, advancements in computational 

power and real-time data integration continue to 

improve the robustness and applicability of SQP in 

gas lift systems, solidifying its position as a critical 

tool in modern petroleum engineering (Curtis et 

al., 2012). 

Despite its advantages, SQP faces challenges 

when applied to large-scale gas lift optimisation 

problems. The computational cost of solving 

successive quadratic subproblems can be high, 

especially when dealing with high-dimensional 

optimisation models. To address this, researchers 

have introduced modifications to the SQP 

algorithm, such as employing surrogate models 

and reduced-order approximations to expedite 

computations. Furthermore, advancements in 

parallel computing and machine learning 

techniques have been leveraged to enhance the 

scalability of SQP, making real-time gas lift 

optimisation more feasible (Bomze et al., 2010). 

As the petroleum industry continues to embrace 

digitalisation and automation, the role of SQP in 

gas lift optimisation will become even more 

prominent. The integration of artificial 

intelligence, real-time data analytics, and cloud 

computing with SQP-based optimisation 

frameworks will enable faster decision-making 

and improved production performance. These 

advancements will ensure that gas lift operations 

remain cost-effective, environmentally 

sustainable, and technically efficient, further 

cementing SQP's importance in petroleum 

engineering and beyond (Bomze et al., 2010). 

3.2 Theoretical Foundation of SQP 

The principle of SQP is based on the iterative 

solution of a sequence of Quadratic Programming 

(QP) subproblems that approximate the original 

nonlinear constrained optimisation problem. It 

combines quadratic approximation techniques 

with Lagrange multiplier updates to achieve an 

optimal solution efficiently. Quadratic 

approximation is central to the formulation of 

SQP. Since nonlinear optimisation problems are 

inherently difficult to solve, SQP transforms them 

into a sequence of quadratic programming (QP) 

subproblems (Stoer, 1985). These subproblems 

are easier to solve and provide search directions 

toward the optimal solution. Lagrange multipliers 

play a crucial role in handling constraints 

effectively within SQP (Borzi, 2023). These 

multipliers provide sensitivity information about 

the objective function with respect to the 

constraints. Their presence in the Lagrangian 

function allows for an efficient representation of 

the optimisation problem that incorporates both 

the primal and dual aspects of the constraints. 

SQP is rooted in nonlinear programming and 

optimisation theory, where the goal is to minimize 

or maximize an objective function subject to 

constraints. Given a general NLP problem: 

min
𝑥∈𝑅𝑛

𝑓(𝑥)    1 

subject to: 

ℎ𝑖(𝑥) = 0, 𝑖 = 1, … , 𝑚   2 

𝑔𝑗(𝑥) ≤ 0, 𝑗 = 1, … , 𝑝   3 

where: 

𝑓(𝑥) is the objective function, 

ℎ𝑖(𝑥)represents equality constraints, 

𝑔𝑗represents inequality constraints. 

SQP iteratively solves a quadratic subproblem to 

approximate the nonlinear objective function and 

constraints. The optimisation problem at each 

iteration is formulated using a second-order 

Taylor series expansion of the Lagrangian 

function. 

3.2.1 The Lagrangian Function 

The Lagrangian function for the NLP problem is 

given by: 

ℒ(𝑥, λ, μ) = 𝑓(𝑥) + ∑ λ𝑖ℎ𝑖(𝑥)𝑚
𝑖=1 + ∑ μ𝑗𝑔𝑗(𝑥)𝑝

𝑗=1     4 

Where ℎ𝑖 are the Lagrange multipliers for the 

equality and inequality constraints, respectively. 
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3.3.2 Quadratic Approximation 

At each iteration kk, SQP solves the following 

Quadratic Programming (QP) subproblem: 

min
𝑑

∇𝑓(𝑥𝑘)𝑇𝑑 +
1

2
𝑑𝑇𝐻𝑘𝑑   5 

Subject to: 

ℎ𝑖(𝑥𝑘) + ∇ℎ𝑖(𝑥𝑘)𝑇𝑑 = 0,  𝑖 = 1, … , 𝑚 6 

𝑔𝑗(𝑥𝑘) + ∇𝑔𝑗(𝑥𝑘)𝑇𝑑 ≤ 0,  𝑗 = 1, … , 𝑝 7 

Where: 

d is the step direction, 

𝐻𝑘 is an approximation of the Hessian matrix of 

the Lagrangian function, which ensures the 

quadratic nature of the problem. 

The update step is: 

𝑥𝑘+1 = 𝑥𝑘 + α𝑘𝑑𝑘   8 

Where α𝑘 is a step size obtained using a line 

search or trust region method. 

3.2.3 Key Components of SQP 

3.2.3.1 Hessian Approximation 

The Hessian matrix 𝐻𝑘 can be computed using 

exact second derivatives (Newton’s method) or 

approximated using quasi-Newton methods such 

as the Broyden–Fletcher–Goldfarb–Shanno 

(BFGS) update. The quasi-Newton update for 𝐻𝑘is 

given by: 

𝐻𝑘+1 = 𝐻𝑘 +
𝑦𝑘𝑦𝑘

𝑇

𝑦𝑘
𝑇𝑠𝑘

−
𝐻𝑘𝑠𝑘𝑠𝑘

𝑇𝐻𝑘

𝑠𝑘
𝑇𝐻𝑘𝑠𝑘

  9 

Where: 

 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘  𝑎𝑛𝑑 𝑦𝑘 = ∇ℒ𝓀+1 − ∇ℒ𝓀. 10 

3.2.3.2 KKT Conditions and Feasibility 

SQP ensures convergence by satisfying the 

Karush-Kuhn-Tucker (KKT) conditions. At an 

optimal solution 𝑥∗, these conditions are: 

Stationarity:  

∇𝑓(𝑥∗) + ∑ λ𝑖
∗∇ℎ𝑖(𝑥∗)𝑚

𝑖=1 + ∑ μ𝑗
∗∇𝑔𝑗(𝑥∗)𝑝

𝑗=1 = 0 11 

Primal feasibility: ℎ𝑖(𝑥∗) = 0, 𝑔𝑗(𝑥∗) ≤ 0          12 

Dual feasibility: μ𝑗
∗ ≥ 0           13 

Complementary slackness:μ𝑗
∗𝑔𝑗(𝑥∗) = 0           14 

If these conditions are satisfied, the solution is 

optimal. 

 

 

3.2.3.3 Constraint Handling 

Inequality constraints in SQP are handled using 

active-set methods, where constraints that are 

active at the solution are treated as equalities in 

the QP subproblem. The algorithm dynamically 

updates the active set as iterations progress. 

3.2.4. Convergence Properties of SQP 

SQP has several desirable convergence 

properties: 

3.2.4.1 Superlinear Convergence 

When using an accurate Hessian approximation, 

SQP exhibits superlinear convergence, making it 

more efficient than first-order methods. 

Robustness: SQP performs well even with tight 

constraints and nonlinearities. 

3.2.4.1 Feasibility Preservation 

Many SQP variants maintain feasibility at each 

step, ensuring practical applicability. 

However, convergence can be affected by: 

i. Poor Hessian approximations 

ii. Ill-conditioned problems 

iii. Constraint degeneracy 

4.0 Formulation of SQP Model for Gas Lift 

Optimisation 

There are various objective functions for gas lift 

optimisation using Sequential Quadratic 

Programming (SQP), however the three main ones 

include: 

1. Maximising Oil Production Rate 

2. Minimising Gas Injection Rate (Energy 

Consumption) 

3. Maximising Gas Lift Efficiency 

Each model includes decision variables, 

constraints, the Hessian matrix, and the SQP 

iterative update formulation. 

Each objective function in gas lift optimisation 

using SQP follows a standard iterative procedure: 

1. Formulate the objective function 

2. Define constraints for production, gas 

injection, and system limits. 

3. Construct the Lagrangian function 

incorporating constraints. 

4. Compute gradients and Hessians to 

approximate the problem quadratically. 

5. Solve the quadratic subproblem and 

update 𝑞𝑔 iteratively. 



MUST Journal of Research and Development (MJRD) Volume 6 Issue 3, September 2025 
e ISSN 2683-6467 & p ISSN 2683-6475 

 

373 
 

4.1 Maximising Oil Production Rate 

Objective Function: 

max
𝑞𝑔

𝑞𝑜 (𝑞𝑔)    15 

where:𝑞𝑜 = Oil production rate, 𝑞𝑔 = Gas injection 

rate (decision variable) 

The Mathematical Model is given as: 

𝑞𝑜 = 𝐶1 ⋅ (𝑞𝑔)
𝐶2

⋅ (
𝑃𝑟−𝑃𝑤𝑓

𝑃𝑟
)

𝐶3
  16 

where:𝐶1, 𝐶2, 𝐶3 are empirical constants, 𝑃𝑟= 

Reservoir pressure, 𝑃𝑤𝑓 = Bottomhole flowing 

pressure, which depends on 𝑞𝑔 

The constraints are: 

i. Gas Injection Limits:  

𝑞𝑔,𝑚𝑖𝑛 ≤ 𝑞𝑔 ≤ 𝑞𝑔,𝑚𝑎𝑥 

ii. Production Target: 

𝑞𝑜 ≥ 𝑞𝑜,𝑚𝑖𝑛 

iii. Wellbore Pressure Stability: 

𝑃𝑤𝑓,𝑚𝑖𝑛 ≤ 𝑃𝑤𝑓 ≤ 𝑃𝑤𝑓,𝑚𝑎𝑥 

SQP Formulation 

The Lagrangian Function is given as: 

ℒ = −𝑞𝑜(𝑞𝑔) + ∑ λ𝑖𝑔𝑖(𝑞𝑔)𝑖  17 

where 𝑔𝑖(𝑞𝑔) are constraint functions. 

The Gradient of the Lagrangian (first derivative) 

becomes: 

∇ℒ = −
𝑑𝑞𝑜

𝑑𝑞𝑔
+ ∑ λ𝑖∇𝑔𝑖𝑖   18 

The Hessian Matrix (second derivative) is given as: 

𝐻 = ∇2ℒ = −
𝑑2𝑞𝑜

𝑑𝑞𝑔
2 + ∑ λ𝑖∇2𝑔𝑖𝑖  19 

The Quadratic Approximation becomes: 

min
𝑑

1

2
𝑑𝑇𝐻𝑑 + ∇ℒ𝒯𝑑  20 

The update rule for 𝑞𝑔 thus becomes: 

𝑞𝑔
(𝑘+1)

= 𝑞𝑔
(𝑘)

+ α𝑑  21 

where α is the step size. 

4.2 Minimising Gas Injection Rate (Energy 

Consumption) 

Objective Function 

min
𝑞𝑔

𝐸 (𝑞𝑔)    22 

Mathematical Model 

The energy required for gas compression is: 

𝐸 =
𝑍𝑅𝑇

η𝑐𝑜𝑚𝑝
(

𝑃𝑖𝑛𝑗

𝑃𝑠
)

γ−1

𝑞𝑔   23 

where: Z = Compressibility factor, R = Gas 

constant, T = Temperature, 𝜂𝑐𝑜𝑚𝑝 = Compressor 

efficiency, 𝛾 = Gas adiabatic index, 𝑃𝑖𝑛𝑗  = Injection 

pressure, 𝑃𝑠 = Standard gas pressure 

Constraints 

Maintain Oil Production Target:𝑞𝑜 ≥ 𝑞𝑜,𝑚𝑖𝑛  

Gas Injection Limits:𝑥 𝑞𝑔,𝑚𝑖𝑛 ≤ 𝑞𝑔 ≤ 𝑞𝑔,𝑚𝑎𝑥 

Compressor Power Constraint:𝑬 ≤ 𝑬𝒎𝒂𝒙 

SQP Formulation 

The Lagrangian Function is given as: 

ℒ = 𝐸(𝑞𝑔) + ∑ λ𝑖𝑔𝑖(𝑞𝑔)𝑖   24 

The Gradient of the Lagrangian becomes: 

∇ℒ =
𝑑𝐸

𝑑𝑞𝑔
+ ∑ λ𝑖∇𝑔𝑖𝑖   25 

The hessian matrix is: 

𝐻 = ∇2ℒ =
𝑑2𝐸

𝑑𝑞𝑔
2 + ∑ λ𝑖∇2𝑔𝑖𝑖  26 

The Quadratic Approximation is: 

min
𝑑

1

2
𝑑𝑇𝐻𝑑 + ∇ℒ𝒯𝑑  27 

The Update Rule is: 

𝑞𝑔
(𝑘+1)

= 𝑞𝑔
(𝑘)

+ α𝑑  29 

4.3 Maximising Gas Lift Efficiency 

The Objective Function is: 

max
𝑞𝑔

η =
𝑞𝑜(𝑞𝑔)

𝑞𝑔
    30 

The Mathematical Model is: 

η(𝑞𝑔) =
𝐶1⋅(𝑞𝑔)

𝐶2⋅(
𝑃𝑟−𝑃𝑤𝑓

𝑃𝑟
)

𝐶3

𝑞𝑔
  31 

The constraints is: 

Production Constraint:𝑞𝑞𝑜 ≥ 𝑞𝑜,𝑚𝑖𝑛 

Gas Injection Limits:𝒒𝒒𝒈,𝒎𝒊𝒏 ≤ 𝒒𝒈 ≤ 𝒒𝒈,𝒎𝒂𝒙 

SQP Formulation 

The Lagrangian Function is: 

ℒ = −η(𝑞𝑔) + ∑ λ𝑖𝑔𝑖(𝑞𝑔)𝑖  32 

The Gradient of the Lagrangian is: 

∇ℒ = −
𝑑η

𝑑𝑞𝑔
+ ∑ λ𝑖∇𝑔𝑖𝑖   33 
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The Hessian Matrix is: 

𝐻 = ∇2ℒ = −
𝑑2η

𝑑𝑞𝑔
2 + ∑ λ𝑖∇

2𝑔𝑖𝑖  34 

The Quadratic Approximation is: 

min
𝑑

1

2
𝑑𝑇𝐻𝑑 + ∇ℒ𝒯𝑑   35 

The Update Rule is: 

𝑞𝑔
(𝑘+1)

= 𝑞𝑔
(𝑘)

+ α𝑑   36 

5.0 Merits and Limitations of SQP in Gas Lift 

Optimisation 

5.1 Merits of SQP in Gas Lift Optimisation 

5.1.1. Robustness in Handling Nonlinearities and 

Constraint Management 

One of the most compelling advantages of 

Sequential Quadratic Programming (SQP) in the 

realm of gas lift optimisation is its robustness and 

efficiency in handling complex nonlinearities and 

managing multiple constraints simultaneously. 

Gas lift optimisation inherently involves nonlinear 

relationships due to the physics of multiphase 

flow, the nonlinear behaviour of gas injection 

relative to oil production, and the complex 

interplay of pressure drops along the wellbore 

(Borzi, 2023). These nonlinearities stem from 

empirical correlations (such as Beggs-Brill or 

Hagedorn-Brown correlations) that are used to 

model the behaviour of the well. Additionally, 

numerous constraints—ranging from operational 

limits (maximum/minimum injection rates and 

pressures) to economic and safety constraints—

must be rigorously satisfied. 

5.1.2 Handling Nonlinear Objective Functions 

Gas lift optimisation problems often have 

objective functions that are nonlinear, for 

example: 

i. Maximising oil production rate: The 

production rate is a nonlinear function of 

the gas injection rate, tubing pressures, 

and other operational parameters. 

ii. Minimising energy consumption: The 

energy required for gas compression or 

injection is a nonlinear function of gas 

properties and the operating conditions. 

iii. Maximising gas lift efficiency: The ratio of 

oil produced per unit of gas injected is 

highly nonlinear. 

SQP is well-suited for such problems because it 

approximates the original nonlinear problem by a 

series of quadratic subproblems. In each iteration, 

the method builds a quadratic model of the 

objective function and linear models of the 

constraints by using second-order derivative 

information (or approximations thereof). This 

approach allows the algorithm to capture the 

curvature of the objective landscape effectively, 

leading to more accurate and reliable convergence 

properties when compared to purely first-order 

methods (Borzi, 2023). 

5.1.3 Efficient Constraint Handling 

In gas lift optimisation, constraints are critical to 

ensuring safe and economically viable operations. 

These constraints include: 

i. Physical constraints: Such as pressure 

limits at the wellbore and maximum 

allowable gas injection rates. 

ii. Operational constraints: Ensuring that oil 

production meets a minimum threshold. 

iii. Equipment constraints: For instance, 

limitations of compressors and gas lift 

valves. 

SQP excels at handling such constraints by 

incorporating them directly into the quadratic 

programming subproblems. By formulating the 

Lagrangian function—an amalgamation of the 

objective function and the weighted sum of 

constraint violations—the algorithm adjusts its 

search direction not just to improve the objective 

but also to satisfy the constraints. This integrated 

approach is particularly useful in gas lift 

optimisation, where a minor violation of pressure 

constraints, for instance, could lead to unsafe 

operating conditions or damage to well integrity 

(Janka, 2015). Furthermore, the iterative update 

mechanism of SQP, which uses step-size 

adjustments and line-search techniques, ensures 

that each successive iterate remains feasible or is 

steered toward feasibility. This reliability is crucial 

in real-world gas lift operations where adherence 

to safety and regulatory constraints is non-

negotiable. 

5.1.4 Rapid Local Convergence 

One notable feature of SQP is its rapid local 

convergence. Once the algorithm identifies a 

region close to an optimal solution, the use of 

second-order information (the Hessian matrix of 
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the Lagrangian) allows SQP to converge 

quadratically. In the context of gas lift 

optimisation, where the operational environment 

may be subject to small but critical adjustments 

(for instance, slight variations in reservoir pressure 

or changes in gas properties), SQP's fast 

convergence ensures that optimal settings can be 

recalculated quickly in response to real-time data. 

This is particularly advantageous in fields that 

require adaptive control strategies, where the gas 

lift system must continually respond to evolving 

reservoir conditions (Janka, 2015). 

5.1.5 Adaptability to Complex Models 

Modern gas lift optimisation often involves 

coupling the well dynamics with reservoir models, 

which leads to highly complex and intertwined 

nonlinear models. SQP's framework is adaptable 

to such complexity. Since it only requires that the 

problem be twice differentiable (or at least 

approximations of the derivatives are available), 

SQP can be integrated with advanced simulation 

tools. Such complexity means that optimisation 

can be performed on the fly during simulation 

studies, allowing operators to test various 

scenarios and operational strategies before 

implementing them in the field (Borzi, 2023). 

5.2 Limitations of SQP in Gas Lift Optimisation 

5.2.1 Dependence on Accurate Derivative 

Information and Sensitivity to Problem Structure 

While SQP offers numerous advantages, one of its 

significant disadvantages—particularly in the 

context of gas lift optimisation—is its heavy 

reliance on accurate derivative information and 

the sensitivity of its performance to the problem's 

structure. This dependence can manifest in 

various practical challenges that may undermine 

the robustness of the optimisation process, 

especially in the highly uncertain or noisy 

environments typical of oil field operations 

(Kungurtsev & Diehl, 2014). 

5.2.2 Need for Accurate Derivative Computation 

At the heart of the SQP method is the 

construction of quadratic models that require 

first- and second-order derivatives (gradients and 

Hessians) of the objective function and the 

constraints. For gas lift optimisation, obtaining 

these derivatives accurately can be challenging for 

several reasons: 

i. Complex and Non-Smooth Models: The 

physical models used in gas lift 

optimisation, such as those describing 

multiphase flow dynamics, can be highly 

complex and sometimes exhibit non-

smooth behaviour. Empirical correlations 

may not always be differentiable 

everywhere, or they might have regions 

where the derivative information is noisy. 

In such cases, the numerical 

approximation of derivatives may lead to 

inaccuracies that can mislead the SQP 

algorithm. 

ii. Measurement Uncertainties: In a 

practical field setting, many parameters 

involved in gas lift optimisation (e.g., 

reservoir pressure, gas properties, and 

flow rates) are measured in real time and 

are subject to measurement errors and 

uncertainties. These uncertainties 

propagate in the derivative estimates. 

SQP’s performance is sensitive to such 

inaccuracies, which can cause 

convergence issues or lead the algorithm 

to settle at a suboptimal solution. 

iii. Computational Expense: Calculating 

second-order derivatives, especially for 

complex systems, can be computationally 

expensive. In real-time or near-real-time 

optimisation scenarios, such as those 

required for adaptive control in gas lift 

operations, this computational burden 

might limit the speed of convergence. 

Although various quasi-Newton methods 

(like BFGS) can be used to approximate 

the Hessian matrix, the quality of these 

approximations is crucial for the success 

of SQP. Poor approximations can result in 

slow convergence or even divergence in 

the worst-case scenarios. 

5.2.3 Sensitivity to Initial Guess and Local 

Optimality 

SQP is a local optimisation method. This means 

that its convergence is highly dependent on the 

initial guess provided to the algorithm. In gas lift 

optimisation, the landscape of the objective 

function can be rugged, with multiple local optima, 

especially when the model includes non-

convexities arising from complex fluid dynamics 

and operational constraints (Janka, 2015). 
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i. Local vs. Global Optimality: If the initial 

guess is not sufficiently close to the global 

optimum, SQP may converge to a local 

optimum that is significantly suboptimal 

from an operational standpoint. This is 

particularly problematic in gas lift 

operations, where small improvements in 

efficiency or production rates can have 

large economic implications over the 

lifetime of a well. The sensitivity of the 

starting point thus requires that operators 

invest additional effort in finding a good 

initial guess or use global optimisation 

techniques in tandem with SQP, which 

adds to the complexity of the overall 

optimisation process. 

ii. Algorithmic Complexity: The iterative 

nature of SQP, which involves solving a 

quadratic subproblem at each iteration, 

means that its performance can degrade 

if the problem structure changes abruptly. 

For instance, if a sudden change in 

reservoir conditions causes the objective 

function’s curvature to change 

dramatically, the previously computed 

Hessian (or its approximation) might 

become outdated. This necessitates 

recalculations or adjustments that can 

slow down convergence. 

5.2.4 Robustness in the Face of Model 

Uncertainty 

In the field of oil production, models are 

simplifications of reality. They might not capture 

all the nuances of the underlying physics, leading 

to model uncertainty. SQP's performance is 

directly affected by the accuracy of the model 

used. If the model does not accurately represent 

the true behaviour of the gas lift system, then the 

derivative data computed from it will be 

inaccurate. This misrepresentation can lead to 

poor optimisation results or unstable behaviour in 

the optimisation iterations (Kungurtsev & Diehl, 

2014). To mitigate these issues, additional 

strategies, such as regularisation techniques or 

robust optimisation frameworks, must be 

integrated with SQP. This increases the 

complexity of the optimisation procedure, which 

may require further tuning and validation. 

6.0  Scholarly Review of Application of SQP to Gas 

Lift 

Wang et al. (2002) conducted a study on the 

optimisation of production operations in 

petroleum fields, focusing on the development of 

mathematical formulations for solving nonlinear 

constrained optimisation problems in gas lift 

networks. The research categorised the problem 

into two formulations, namely P1 and P2, and 

carried out a comparative analysis using 

Sequential Quadratic Programming (SQP) and 

Mixed-Integer Linear Programming (MILP) 

methods for gas lift optimisation. In Case 1, both 

Formulation P1 and Formulation P2 were solved 

using the SQP approach, and their performance 

was compared with MILP in terms of well rate and 

lift gas allocation optimisation. The findings 

indicated that SQP outperformed MILP due to its 

ability to account for the deliverability constraints 

of the gathering system, which MILP neglected by 

optimising well rates and lift gas rates based solely 

on gas lift performance curves. Case 2 evaluated 

the computational efficiency of Formulation P1 

against Formulation P2, while Case 3 extended 

this analysis to test Formulation P2 on problems 

of varying sizes and complexities. The results 

demonstrated that the SQP method provided 

superior computational efficiency, leading to an 

8% increase in field production rates while 

requiring significantly less injected gas. 

Additionally, the model was tested on multiple 

field scenarios, where it consistently proved to be 

robust and efficient, making it suitable for real-

time production control and reservoir 

development. 

Dehdari (2010) explored the application of SQP 

for solving constrained production optimisation 

problems, using a case study from the Brugge 

Field. The study focused on the development of 

equations governing the SQP framework, various 

formulations of SQP subproblems, and the 

enhancement of the optimisation algorithm. Key 

improvements included refining gradient 

estimation through covariance localisation, 

employing parallel computations, and updating 

QR factorisation. The results indicated that SQP 

significantly increased the rate of Net Present 

Value (NPV) growth compared to the steepest 

ascent method, an unconstrained optimisation 

algorithm. The study found that SQP improved 
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cumulative oil recovery by 14% and achieved a 

considerably higher NPV compared to the 

steepest ascent method. Furthermore, the SQP 

algorithm exhibited lower sensitivity to initial 

conditions, demonstrating consistent 

performance across different seed numbers. 

Additionally, it was more effective in reducing 

water production, particularly in the later time 

steps of the optimisation process. The efficiency 

of the method was further enhanced by updating 

QR factorisation dynamically instead of 

recomputing it from scratch, which significantly 

reduced computational time. Parallel computing, 

using Message Passing Interface (MPI) for matrix 

multiplications and gradient calculations, also 

played a crucial role in accelerating the 

optimisation process. The elimination of non-

negative constraints further reduced runtime, 

making SQP more applicable to large-scale 

optimisation problems despite the need for 

solving complex nonlinear equations. 

Liu et al. (2018) conducted a comparative analysis 

of the Sequential Quadratic Programming (SQP) 

and Augmented Lagrangian (AL) algorithms for 

deterministic constrained production optimisation 

in hydrocarbon reservoirs. The study focused on 

optimising Net Present Value (NPV) for a three-

phase reservoir under waterflooding conditions. 

The methodology included the development of 

the NPV function for a waterflooded reservoir, 

the formulation of a nonlinear constrained 

optimisation problem relative to NPV, and the 

implementation of the first-order optimality 

conditions, known as the Karush-Kuhn-Tucker 

(KKT) conditions. Further, the study involved the 

development of the Augmented Lagrangian (AL) 

approach and the formulation and solution of the 

SQP problem. The computational results showed 

that while the AL algorithm could achieve a 

slightly higher ultimate NPV under well-tuned 

parameters and favourable initial conditions, the 

SQP method demonstrated superior efficiency, 

robustness, and constraint-handling capabilities. 

Under SQP-optimised well control settings, the 

water cut in each producer adhered strictly to the 

imposed constraints, whereas the AL method led 

to minor constraint violations. The study also 

revealed that SQP achieved a 25% improvement 

in cumulative oil recovery. One major drawback of 

the AL approach was its sensitivity to initial 

conditions, particularly the penalty parameter, 

which affected the number of outer-loop 

iterations required for convergence. In contrast, 

SQP exhibited stable performance regardless of 

initial conditions and consistently achieved a 

higher NPV compared to AL when starting from 

an unfavourable initial point. To enhance 

performance, the study proposed a hybrid SQP-

AL algorithm that applied the AL search direction 

to improve SQP convergence, leading to higher 

NPV with only a slight increase in iterations. 

Kissoon et al. (2012) examined optimal gas 

utilisation strategies for maximising oil recovery in 

a mature oil field. The study methodology 

involved well model construction and validation, 

surface network modelling and optimisation, 

implementation of the SQP algorithm, 

optimisation of the surface network, and 

economic analysis of the optimisation results. In 

Case 1, an increase in oil production rate by 18% 

was observed, rising from 133 b/d to 162 b/d 

when a total of 4 MMscfd of gas was injected. 

Similarly, in Case 2, oil production increased by 

15%, from 133 b/d to 154 b/d, when 3 MMscfd 

of gas was injected. The study concluded that 

optimal gas allocation to wells could lead to a 15% 

increase in oil production, a 30% reduction in gas 

utilisation, a 25% decrease in field operational 

costs, and a 42% increase in NPV. The integrated 

production model developed in this study proved 

useful for reservoir management, as it allowed 

real-time updates to production performance 

based on changes in water cut, reservoir pressure, 

and gas-oil ratio (GOR). The model also facilitated 

the generation of updated lift curves, enabling 

better reallocation of lift gas and the prediction of 

new oil rates and NPV values, making it a valuable 

tool for optimising mature field operations. 

Yakoot et al. (2014) conducted a study on 

optimising gas-lift performance and multi-well 

networking in an Egyptian oil field using a 

simulation approach. The research investigated 

the effects of injection gas gravity and reservoir 

pressure on gas-lift performance and developed a 

total system production optimisation model using 

PROSPER and GAP software. The study focused 

on constructing well models using PROSPER, 

developing surface network models using GAP, 

implementing Sequential Quadratic Programming 

(SQP) under various constraints, optimising the 

surface network, and conducting economic 

analyses. The results revealed a steady increase in 
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oil production as injection gas gravity increased, 

reaching an optimal value of 0.8, beyond which 

even minor increases led to significant production 

gains. The implementation of SQP within the GAP 

simulator resulted in an additional 200 barrels of 

oil per day while simultaneously reducing injection 

gas consumption by 5.5 MMScfd. This dual 

improvement in production and gas efficiency 

significantly enhanced the overall profitability of 

the field, demonstrating the potential of advanced 

optimisation techniques for field-wide gaslift 

management. 

Diehl et al. (2018) explored strategies for 

increasing oil production in unstable gas-lift 

systems using nonlinear model predictive control. 

The study employed the transient multiphase flow 

simulator OLGA® and the dynamic process 

simulator UNISIM DESIGN® to simulate the oil 

production system under a nonlinear predictive 

control strategy. A comparative analysis of two 

nonlinear optimisation methods, the Local 

Linearisation Technique (LLT) and SQP, was 

conducted to evaluate their effectiveness. The 

methodology involved the development of 

ordinary and partial differential equations (ODEs 

and PDEs) to characterise the dynamic behaviour 

of oil wells, followed by the formulation and 

solution of optimisation problems using LLT and 

SQP algorithms. The study found that 

implementing a controller based on SQP led to a 

45% increase in oil production, attributed to 

improved system stability and the ability to 

maintain optimal operating points. A significant 

portion of these gains resulted from shifting the 

operating point and stabilising intermittent flow, 

illustrating the power of nonlinear predictive 

control in enhancing production efficiency. The 

effectiveness of the optimisation was strongly 

linked to the reservoir flow constant Kr, which 

represents the well’s productivity index, and the 

unstable equilibrium point, which determines the 

minimum achievable pressure for a specific choke 

opening and gas lift flow rate. The study 

concluded that SQP is a robust and efficient 

optimisation method for interconnected 

production networks, capable of significantly 

improving oil productivity in unstable gas-lift 

systems. 

Okafor and Loyibo (2024) addressed the problem 

of nonlinear field network optimisation in gas-lift 

systems using SQP. The research developed 

nonlinear constrained equations for optimising 

gas-lift networks under limited gas allocation 

conditions. The study began with the construction 

of PROSPER models to simulate well-gas lift 

performance, incorporating key well parameters 

such as tubing size, water cut, bottom-hole 

flowing pressure (Pwf), and skin factor. These well 

models were then integrated into a GAP model to 

represent the surface network, linking PROSPER-

generated vertical lift performance (VLP) curves 

with GAP to simulate production and injection 

networks. Two simulation scenarios were 

considered: in the first case, predefined gas 

injection rates were allocated to wells, and overall 

oil production was calculated; in the second case, 

GAP used SQP to dynamically allocate lift gas 

based on the optimal gas-lift potential of each well 

to maximise oil production. The results indicated 

that optimising the field production network using 

SQP in GAP, where each individual well was linked 

to a dedicated flowline, increased recovered oil by 

1.5% and reduced total field lift gas injection rates 

by 2%. When production was optimised across 

four flowlines leading to a central manifold, oil 

production increased by 10%, with system 

efficiency improving by 20% and overall 

operational performance being significantly 

enhanced. The optimisation process 

demonstrated that a comprehensive field-wide 

gas-lift strategy could yield multiple benefits, 

including increased oil production, improved flow 

assurance, enhanced system efficiency, optimal 

gas allocation, and a reliable production plan. The 

study emphasised the importance of conducting 

gas-lift optimisation at a field-wide level to 

achieve holistic improvements in production 

network performance while addressing the 

nonlinear mathematical challenges associated 

with gas-lift allocation. 

Sharma et al. (2012) investigated the nonlinear 

optimisation problem associated with the optimal 

distribution of lift gas among multiple oil wells. 

The study developed a nonlinear objective 

function based on a simplified dynamic model of 

an oil field, where the decision variables 

represented the lift gas flow rate set points for 

each oil well. The optimisation problem was 

solved using the 'fmincon' solver in MATLAB, with 

the results verified through the hill-climbing 

method. The study demonstrated that after 

optimisation, total oil production increased by 
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approximately 4%. For fields where multiple oil 

wells share lift gas from a common source, a 

cascade control strategy combined with a 

nonlinear steady-state optimiser was found to 

function as a self-optimising control structure. 

This approach ensured that when the total supply 

of lift gas was the only input disturbance, repeated 

optimisation beyond the initial iteration had no 

further effect on total oil production. The findings 

highlighted the effectiveness of nonlinear 

optimisation in optimising lift gas distribution and 

improving field-wide production efficiency. 

Dutta-Roy et al. (1997) presented a novel 

approach to the simulation and optimisation of the 

overall gas lift problem using a rigorous pressure-

balance-based multiphase flow network 

technique coupled with a robust sequential 

quadratic programming (SQP) method for 

nonlinear constrained optimisation. The results of 

this new method were analysed and compared 

with conventional techniques, demonstrating a 

0.56% increase in oil recovery when compared to 

traditional approaches. 

Diehl et al. (2018) conducted a study where an oil 

production system was optimised using a 

nonlinear predictive control strategy. The 

evaluation of this strategy within a rigorous model 

(OLGA) highlighted the association between 

predictive capability and integrated actuation in 

the manipulated variables, leading to increased oil 

production and a partial or complete suppression 

of instabilities in multiphase flow. The control 

strategy significantly reduced the rate of valve 

actuation required, allowing for the use of slow 

choke valves as final control elements. Using a 

nonlinear predictive control strategy with a Flow-

Orientated Well Model (FOWM) to predict 

dynamic behaviour near the bottom of the 

production column proved highly effective in 

improving the operation of unstable oil production 

systems. The results indicated a partial or total 

suppression of severe slugging and an increase in 

oil production. By manipulating the choke valve 

and gas lift flow, the nonlinear model predictive 

control (NMPC) could adjust the operating point 

of the well and find a more stable operational 

region while considering constraints such as 

limited gas availability in the gas lift system. 

Furthermore, NMPC was capable of reducing or 

eliminating oscillations in the naturally unstable 

open-loop region, stabilising the well at an 

average operating point comparable to the open-

loop operation point. The controller functioned as 

a slugging attenuator, reducing instability 

intensity and increasing oil production. Part of this 

gain resulted from shifting the operating point, 

while another part was attributed to stabilising the 

intermittent flow. The study reported production 

gains of approximately 45%, which aligns with 

findings in previous research. However, the 

magnitude of these gains was strongly influenced 

by the reservoir flow constant (Kr), often called 

the well’s productivity index, and the unstable 

equilibrium point, which represents the minimum 

pressure achievable for a given choke opening and 

gas lift flow rate. Consequently, the extent of oil 

productivity improvements depended on the 

characteristics of each production system. 

Regarding manipulated variables, the proposed 

control strategy offered two significant benefits: 

it enabled slow-acting choke valves to perform 

comparably to fast-acting ones, thereby 

broadening its implementation scope, and it 

balanced actuation intensity between the 

production choke and gas lift flow rate, leading to 

smoother variable adjustments. The ability to 

modify the operating point, enhance stability, and 

minimise control actions on manipulated variables 

made this approach highly advantageous for 

managing unstable gas-lifted wells. 

Liu and Reynolds (2020) introduced a sequential-

quadratic-programming-filter algorithm with a 

modified stochastic gradient for robust life-cycle 

optimisation problems involving nonlinear state 

constraints. They addressed an optimisation 

problem where the true gradients, which could 

not be computed analytically, were approximated 

using ensemble-based stochastic gradients 

through an improved stochastic simplex 

approximate gradient (StoSAG). Their study 

focused on waterflooding optimisation, with well 

controls as optimisation variables and the life-

cycle net present value (NPV) of production as the 

cost function. The constrained optimisation 

problem was solved using SQP, with constraints 

enforced via the filter method. The researchers 

introduced modifications to StoSAG that 

improved its fidelity, yielding more accurate 

gradient approximations compared to the original 

algorithm. These improvements significantly 

enhanced the optimisation algorithm’s 

performance. Without these modifications, 
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applying SQP with the basic StoSAG approach 

could lead to highly suboptimal results, 

particularly for optimisation problems with 

nonlinear state constraints. Robust optimisation 

required each constraint to be satisfied across all 

reservoir models, posing a considerable 

computational challenge. While relying on 

reservoir simulations to enforce nonlinear state 

constraints heuristically reduced computational 

costs, it often led to inferior results. To address 

this, the researchers developed an alternative 

method for handling nonlinear state constraints 

that avoided explicit enforcement for each 

reservoir model while ensuring minimal constraint 

violations. This novel approach resulted in a 25% 

increase in cumulative field production, 

demonstrating its effectiveness in large-scale 

reservoir management. 

Alarcón et al. (2002) presented a new 

mathematical fit for the gas-lift performance 

curve (GLPC), detailing numerical optimisation 

results and comparing them with other published 

methods. The GLPC could either be measured in 

the field or generated via computer simulations 

using nodal analysis. Their optimisation technique 

exhibited rapid convergence and broad 

applicability. Numerical experimentation 

confirmed the method’s robustness, fast 

computation, and adherence to GLPC 

performance principles. The study revealed that 

while different optimisation techniques generally 

produced similar total oil flow rates (QoT), 

individual gas allocation and oil production varied 

significantly based on the chosen method. The 

accuracy of the GLPC data points played a crucial 

role in determining optimisation performance, 

underscoring the need to minimise uncertainties 

in field data and multiphase flow model 

predictions. The mathematical fit of the GLPC 

significantly influenced gas allocation for 

individual wells, with the proposed model yielding 

more reliable and accurate predictions due to its 

superior capability in fitting GLPC data points. The 

results indicated a 0.54% increase in cumulative 

field production using this optimised model, 

highlighting its potential for improving gas-lift 

allocation strategies. Overall, the research 

demonstrated that precise mathematical 

modelling of GLPC could enhance production 

efficiency and resource utilisation in gas-lifted oil 

fields. 

Liu et al. (2018) conducted a study comparing the 

performance of sequential quadratic 

programming (SQP) and augmented Lagrangian 

(AL) algorithms for deterministic constrained 

production optimisation in hydrocarbon 

reservoirs. Both methods have been extensively 

utilised in solving nonlinear constrained 

optimisation problems, particularly in numerical 

optimisation. The study aimed to assess their 

robustness, efficiency, and ability to handle 

constraints within the context of optimising the 

PUNQ reservoir model. The gradients of the 

objective function and nonlinear constraints were 

estimated using the adjoint method, ensuring 

precise evaluations of sensitivities required for 

optimisation. The computational results indicated 

that with carefully tuned parameters and a well-

chosen initial starting point, the AL method 

occasionally yielded a slightly higher net present 

value (NPV). However, in general, SQP exhibited 

superior performance in terms of efficiency, 

robustness, and constraint handling. One of the 

most significant advantages of SQP was its ability 

to strictly enforce production constraints, such as 

keeping the water cut for each producer within 

the specified limits. In contrast, the AL method, 

despite its effectiveness, occasionally resulted in 

minor violations of these constraints. 

To further enhance optimisation performance, Liu 

et al. introduced an SQP-AL hybrid algorithm that 

incorporated the AL search direction within the 

SQP convergence process. The results 

demonstrated that this hybrid approach was 

capable of achieving a slightly higher NPV than 

the standalone SQP method. However, this 

improvement came at the cost of additional 

optimisation iterations and minor constraint 

violations at convergence. In the first case study, 

both SQP and AL were applied to the production 

optimisation problem under identical initial 

conditions. The AL algorithm required 128 

simulations and 44 gradient evaluations to 

achieve convergence, whereas SQP reached 

convergence significantly faster, needing only 24 

simulations and 14 gradient evaluations. These 

results highlighted the efficiency of SQP, making 

it a more computationally attractive choice. 

The robustness of both algorithms was further 

examined by initiating optimisation from a 

suboptimal or “poor” starting point. The AL 

algorithm exhibited slower convergence, requiring 
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additional outer-loop iterations and more 

simulations compared to cases with a well-chosen 

starting point. This inefficiency was attributed to 

the initialisation of the penalty parameter, which 

affected the algorithm's ability to quickly refine 

the optimisation trajectory. In contrast, SQP 

maintained stable performance regardless of the 

starting conditions and consistently achieved a 

higher ultimate NPV when initialised from a poor 

starting point. 

A more stringent constraint scenario was also 

investigated, wherein the maximum allowable 

water cut for each production well was set to 0.8. 

Under these conditions, the SQP algorithm again 

demonstrated superior performance by efficiently 

managing the imposed constraints while 

maintaining robust optimisation performance. The 

AL algorithm, on the other hand, exhibited minor 

constraint violations at convergence, reinforcing 

the observation that SQP was more effective at 

handling highly constrained production 

optimisation problems. To further explore 

optimisation enhancements, Liu et al. 

implemented the hybrid SQP-AL approach in an 

additional case study. In this setup, the AL search 

direction was incorporated into the SQP 

framework during the final convergence phase. 

The results confirmed that the SQP-AL algorithm 

achieved a slightly higher NPV compared to the 

standalone SQP approach. However, this 

outcome came at the expense of increased 

optimisation iterations and occasional minor 

constraint violations. Despite these drawbacks, 

the hybrid methodology proved to be a viable 

alternative for maximising field performance. 

The overall findings of the study underscore the 

advantages of SQP in terms of efficiency, 

robustness, and its ability to rigorously enforce 

constraints. While AL exhibited promising results 

in certain cases, its sensitivity to parameter tuning 

and starting conditions made it less reliable in 

practical applications. The introduction of the 

SQP-AL hybrid method further demonstrated the 

potential for improved optimisation outcomes, 

albeit with trade-offs in computational 

complexity. The study concluded that the 

application of these advanced optimisation 

techniques could significantly enhance 

hydrocarbon reservoir management, with the 

proposed optimisation model leading to an 

additional 16% increase in cumulative oil recovery 

from the field. 

The survey on the use of SQP for production 

optimisation is presented in Table 2. 

Table 2 

Survey on the Use of SQP for Production Optimisation 

S/No Technique 
Reservoir 
Fluid type Well Type Applicability 

Parameter 
Analyzed Difference  Reference 

1 SQP 
Oil Reservoir 
fluid Gas lifted well 

Field network 
of wells 

Cumulative Oil 
Production 4% 

Sharma et al. 
(2012) 

2 SQP 
Oil Reservoir 
fluid Gas lifted well 

Field network 
of wells 

Cumulative Oil 
Production 10% 

Okafor and Loyibo 
(2024) 

3 SQP 
Oil Reservoir 
fluid Gas Lifted well 

Field network 
of wells 

Cumulative Oil 
Production 0.56% 

Dutta-Roy and 
Kattapuram (1997) 

4 SQP 
Oil Reservoir 
fluid Gas lifted well 

Field network 
of wells 

Cumulative Oil 
Production 26% 

Al-Mansory et al. 
2024) 

5 SQP 
Oil Reservoir 
fluid Gas lifted well 

Field network 
of wells 

Cumulative Oil 
Production 3.78% 

Yakoot et al. 
(2014) 

6 SQP 
Oil Reservoir 
fluid Gas lifted well 

Field network 
of wells 

Cumulative Oil 
Production 10.43% 

Ruz-Hernandez et 
al. (2010) 

7 SQP 
Oil Reservoir 
fluid Gas lifted well 

Field network 
of wells 

Cumulative Oil 
Production 15% 

Kissoon et al. 
(2012) 

8 SQP 
Oil Reservoir 
fluid Gas Lifted well 

Field network 
of wells 

Cumulative Oil 
Production 14% Dehdari (2010) 

9 SQP 
Oil Reservoir 
fluid Gas lifted well 

Field network 
of wells 

Cumulative Oil 
Production 69.6% Bandekian (2023) 

10 SQP 
Oil Reservoir 
fluid Gas lifted well 

Field network 
of wells 

Cumulative Oil 
Production 12% Diez et al. (2005) 

11 SQP 
Oil Reservoir 
fluid Gas Lifted well 

Field network 
of wells 

Cumulative Oil 
Production 25% 

Liu and Reynolds, 
(2020) 

12 SQP 
Oil Reservoir 
fluid Gas lifted well 

Field network 
of wells 

Cumulative Oil 
Production 16% Liu et al. (2018) 

13 SQP 
Oil Reservoir 
fluid Gas lifted well 

Field network 
of wells 

Cumulative Oil 
Production 0.54% 

Alarco´n et al. 
(2002) 

14 SQP 
Oil Reservoir 
fluid Gas lifted well 

Field network 
of wells 

Cumulative Oil 
Production 8% Wang et al. (2002) 
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compared with 
MILP 

15 SQP 
Oil Reservoir 
fluid Gas Lifted well 

Field network 
of wells 

Cumulative Oil 
Production 2.17% 

Georgiadis and 
Pistikopoulos 
(2008) 

16 SQP  
Oil Reservoir 
fluid Gas lifted well 

Field network 
of wells 

Cumulative Oil 
Production 
compared with 
MILP 45% Diehl et al. (2018) 

17 SQP 
Oil Reservoir 
fluid Gas Lifted well 

Field network 
of wells 

Cumulative Oil 
Production 8% Wang et al. (2002) 

18 SQP 
Oil Reservoir 
fluid Gas Lifted well 

Field network 
of wells 

Cumulative Oil 
Production 19.35% 

Davidson and 
Beckner (2003) 

Figure 1  

Plot of Increase in Cumulative Oil Recovery Due 

to Optimisation Using SQP By Scholars 

 
SQP has proven to be a highly effective numerical 

optimisation technique for gas-lift optimisation, 

demonstrating superior computational efficiency, 

constraint-handling capabilities, and production 

enhancement compared to alternative methods. 

Its application in real-time production control, 

field-wide gas-lift management, and nonlinear 

model predictive control underscores its 

versatility in addressing complex petroleum 

engineering challenges. Continued advancements 

in hybrid optimisation strategies, machine learning 

integration, and computational efficiency will 

further enhance the applicability and impact of 

SQP in the oil and gas industry. 

7.0 Conclusion 

 This study reviewed sequential quadratic 

programming (SQP) and its application to gas lift 

optimisation and underscored its efficacy as a 

robust numerical optimisation method capable of 

handling nonlinearly constrained problems with 

high accuracy and efficiency. SQP leverages 

second-order approximations of the objective 

function and constraints, utilising Hessian 

approximations and Lagrange multipliers to 

iteratively refine solutions. This ensures fast 

convergence and reliable performance, 

particularly for complex engineering applications 

such as gas lift optimisation, where operational 

constraints and nonlinearities pose significant 

challenges. 

In gas lift optimisation, SQP provides a structured 

approach to maximising oil production by 

optimising injection gas allocation. The iterative 

nature of SQP enables the handling of the 

nonlinear interactions between gas injection rates, 

well productivity, and surface facility constraints, 

offering superior performance compared to 

traditional gradient-based and heuristic 

approaches. Moreover, SQP’s ability to 

incorporate active constraint management makes 

it particularly suited for real-world applications 

where dynamic operational limits must be 

adhered to. The following conclusions were 

reached. 

i. Superiority of SQP over other Methods: 

Across multiple studies, SQP consistently 

outperformed alternative optimisation 

techniques, including Mixed-Integer 

Linear Programming (MILP) and the 

Augmented Lagrangian (AL) method. SQP 

demonstrated superiority to MILP in 

accounting for the deliverability 

constraints of the gathering system, 

leading to enhanced optimisation of well 

rates and lift gas allocation. Similarly, SQP 

showed robustness in strictly enforcing 

production constraints, unlike AL, which 

was prone to minor constraint violations. 

ii. Enhanced Computational Efficiency: The 

computational advantages of SQP were 

well-documented. SQP’s faster 
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convergence in constrained production 

optimisation, attributing improvements to 

refined gradient estimation, parallel 

computing, and QR factorisation updates. 

The SQP-filter algorithm with a modified 

stochastic gradient approach significantly 

improved optimisation performance in 

large-scale reservoir management. 

iii. Significant Gains in Oil Production and 

Economic Benefits: Various studies 

reported substantial improvements in 

production rates, Net Present Value 

(NPV), and gas efficiency. SQP showed as 

much as a 42% increase in NPV through 

optimal gas allocation. Applying SQP in 

nonlinear model predictive control led to 

a 45% increase in oil production by 

stabilising intermittent flow. 

iv. Applicability to Large-Scale and Real-

Time Optimisation: Studies showed SQP’s 

ability to optimise large-scale gas-lift 

networks and dynamically allocate lift gas 

in real time. The integration of SQP into 

production simulation tools like 

PROSPER, GAP, and OLGA enabled 

robust field-wide optimisation strategies, 

leading to improved flow assurance and 

production stability. 

v. Hybrid Optimisation Strategies: While 

SQP exhibited strong standalone 

performance, researchers explored hybrid 

approaches to further enhance 

optimisation outcomes.The SQP-AL 

hybrid algorithm leveraged AL search 

directions to improve SQP convergence, 

yielding higher NPV with minimal 

constraint violations. Similarly, combined 

nonlinear steady-state optimisation with 

cascade control strategies to optimise lift 

gas distribution efficiently. 

vi. Consideration of Practical Constraints: 

One of the strengths of SQP is its ability 

to incorporate real-world constraints 

such as reservoir pressure limits, gas-lift 

performance curves, and economic 

factors. Many studies emphasised the 

importance of precise mathematical 

modelling in gas-lift performance curves, 

which significantly influenced gas 

allocation strategies and overall 

production efficiency. 
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